Solveeit Logo

Question

Question: P is a point on the ellipse \[\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\] with foci at...

P is a point on the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 with foci at S.SS.S'. Normal at P cuts the xx-axis at G and if SPSP=23\dfrac{{SP}}{{S'P}} = \dfrac{2}{3} then SGSG=\dfrac{{S'G}}{{SG}} =
A.49\dfrac{4}{9}
B.23\dfrac{2}{3}
C.2a3b\dfrac{{2a}}{{3b}}
D.32\dfrac{3}{2}

Explanation

Solution

Here, we will find the ratio of the distance of the point G from the focal points . We will use the distance between the focal points to find the length of the line segments from the ellipse. We will use the co-ordinates of the foci and the normal cuts the xx-axis. By using the distance formula and then by substituting the value of the parametric co-ordinates, we will find the ratio of the distance of the point G from the focal points .

Formula Used:
We will use the following formula:
1.Distance between foci is given by the formula SG+SG=2aeS'G + SG = 2ae
2.Distance on the major axis is given by the formula SP+SP=2aSP + S'P = 2a
3. d=(x1x2)+(y1y2)d = \left| {\left( {{x_1} - {x_2}} \right) + \left( {{y_1} - {y_2}} \right)} \right|
4.The square of the sum of two numbers is given by the formula: (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
5.The square of the difference of two numbers is given by the formula: (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab

Complete step-by-step answer:

Let SS' and SS be the focal points and PP be any point on the ellipse and GG is the normal cutting the x-axis
Distance on the major axis is given by the formula SP+SP=2aSP + S'P = 2a.
We are given that SPSP=23\dfrac{{SP}}{{S'P}} = \dfrac{2}{3}
So, we have
SP+SP=2+3=5SP + S'P = 2 + 3 = 5
Thus, we get
SP2a=25\dfrac{{SP}}{{2a}} = \dfrac{2}{5}
On cross multiplication, we get
Thus, we get
SP2a=35\dfrac{{S'P}}{{2a}} = \dfrac{3}{5}
On cross multiplication, we get
SP=6a5\Rightarrow S'P = \dfrac{{6a}}{5}
We know that SS=2aeSS' = 2ae
Let us consider SGSG=k\dfrac{{S'G}}{{SG}} = k
By adding SGSG\dfrac{{SG}}{{SG}} on both the sides, we get
SGSG+SGSG=k+SGSG\Rightarrow \dfrac{{S'G}}{{SG}} + \dfrac{{SG}}{{SG}} = k + \dfrac{{SG}}{{SG}}
Now taking LCM, we get
SG+SGSG=k+1\Rightarrow \dfrac{{S'G + SG}}{{SG}} = k + 1
Substituting SG+SG=2aeS'G + SG = 2ae in the above equation, we get
2aeSG=k+1\Rightarrow \dfrac{{2ae}}{{SG}} = k + 1
On cross multiplication, we get
SG=2aek+1\Rightarrow SG = \dfrac{{2ae}}{{k + 1}} ……………………………………………………………………………………………(1)\left( 1 \right)
Let P(acosθ,bsinθ)P\left( {a\cos \theta ,b\sin \theta } \right) be a point on the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1.
Equation of Normal to the ellipse axsecθbycosecθ=a2b2ax\sec \theta - by\cos ec\theta = {a^2} - {b^2} and intersects the xx-axis at the point G.
By substituting y=0y = 0 in the equation of the normal, we get
axsecθ=a2b2ax\sec \theta = {a^2} - {b^2}
Dividing asecθa\sec \theta on both sides, we get
x=a2b2a1secθ\Rightarrow x = \dfrac{{{a^2} - {b^2}}}{a} \cdot \dfrac{1}{{\sec \theta }}
Now using the reciprocal identity 1secθ=cosθ\dfrac{1}{{\sec \theta }} = \cos \theta , we get
x=a2b2acosθ\Rightarrow x = \dfrac{{{a^2} - {b^2}}}{a} \cdot \cos \theta
The co-ordinates of the Point G is (a2b2acosθ,0)\left( {\dfrac{{{a^2} - {b^2}}}{a} \cdot \cos \theta ,0} \right)
Let S(ae,o)S\left( {ae,o} \right) and S(ae,0)S'\left( { - ae,0} \right) be the co-ordinates on the ellipse.
Now, by using the distance formula d=(x1x2)+(y1y2)d = \left| {\left( {{x_1} - {x_2}} \right) + \left( {{y_1} - {y_2}} \right)} \right|, we get
aea2b2acosθ=2aek+1\left| {ae - \dfrac{{{a^2} - {b^2}}}{a} \cdot \cos \theta } \right| = \dfrac{{2ae}}{{k + 1}}
aeae2cosθ=2aek+1\Rightarrow \left| {ae - a{e^2}\cos \theta } \right| = \dfrac{{2ae}}{{k + 1}}
By taking out the common factors, we get
ae(1ecosθ)=2aek+1\Rightarrow ae\left( {1 - e\cos \theta } \right) = \dfrac{{2ae}}{{k + 1}}
(1ecosθ)=2k+1\Rightarrow \left( {1 - e\cos \theta } \right) = \dfrac{2}{{k + 1}}
12k+1=ecosθ\Rightarrow 1 - \dfrac{2}{{k + 1}} = e\cos \theta………………………………………………………………………(2)\left( 2 \right)
We have the equations of the lines as
(aeacosθ)2+(asinθ)2=(6a5)2\Rightarrow {\left( { - ae - a\cos \theta } \right)^2} + {\left( {a\sin \theta } \right)^2} = {\left( {\dfrac{{6a}}{5}} \right)^2}
Now using the identity (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab, we get
a2e2+a2cos2θ+2a2ecosθ+a2sin2θ=(36a225)\Rightarrow {a^2}{e^2} + {a^2}{\cos ^2}\theta + 2{a^2}e\cos \theta + {a^2}{\sin ^2}\theta = \left( {\dfrac{{36{a^2}}}{{25}}} \right)
a2e2+a2+2a2ecosθ=(36a225)\Rightarrow {a^2}{e^2} + {a^2} + 2{a^2}e\cos \theta = \left( {\dfrac{{36{a^2}}}{{25}}} \right) …………………………………………..(3)\left( 3 \right)
(aeacosθ)2+(asinθ)2=(4a5)2\Rightarrow {\left( {ae - a\cos \theta } \right)^2} + {\left( {a\sin \theta } \right)^2} = {\left( {\dfrac{{4a}}{5}} \right)^2}
Now using the identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we get
a2e2+a2cos2θ2a2ecosθ+a2sin2θ=(16a225)\Rightarrow {a^2}{e^2} + {a^2}{\cos ^2}\theta - 2{a^2}e\cos \theta + {a^2}{\sin ^2}\theta = \left( {\dfrac{{16{a^2}}}{{25}}} \right)
a2e2+a22a2ecosθ=(16a225)\Rightarrow {a^2}{e^2} + {a^2} - 2{a^2}e\cos \theta = \left( {\dfrac{{16{a^2}}}{{25}}} \right) …………………………………………..(4)\left( 4 \right)
Subtracting equation (4)\left( 4 \right)from equation (3)\left( 3 \right), we get
2a2ecosθ2a2ecosθ=(361625)a2\Rightarrow - 2{a^2}e\cos \theta - 2{a^2}e\cos \theta = \left( {\dfrac{{36 - 16}}{{25}}} \right){a^2}
4a2ecosθ=(2025)a2\Rightarrow - 4{a^2}e\cos \theta = \left( {\dfrac{{20}}{{25}}} \right){a^2}
By cancelling the terms, we get
ecosθ=(15)\Rightarrow - e\cos \theta = \left( {\dfrac{1}{5}} \right)
cosθ=(15e)\Rightarrow \cos \theta = \left( { - \dfrac{1}{{5e}}} \right)
By substituting cosθ=(15e)\cos \theta = \left( { - \dfrac{1}{{5e}}} \right) in equation (2)\left( 2 \right), we get
12k+1=e15e\Rightarrow 1 - \dfrac{2}{{k + 1}} = e\dfrac{{ - 1}}{{5e}}
1+15=2k+1\Rightarrow 1 + \dfrac{1}{5} = \dfrac{2}{{k + 1}}
By taking the LCM, we get
1×55+15=2k+1\Rightarrow 1 \times \dfrac{5}{5} + \dfrac{1}{5} = \dfrac{2}{{k + 1}}
65=2k+1\Rightarrow \dfrac{6}{5} = \dfrac{2}{{k + 1}}
1k+1=35\Rightarrow \dfrac{1}{{k + 1}} = \dfrac{3}{5}
On cross multiplication, we get
k+1=53\Rightarrow k + 1 = \dfrac{5}{3}
k=531\Rightarrow k = \dfrac{5}{3} - 1
By taking the LCM, we get
k=531×33\Rightarrow k = \dfrac{5}{3} - 1 \times \dfrac{3}{3}
k=533\Rightarrow k = \dfrac{{5 - 3}}{3}
k=23\Rightarrow k = \dfrac{2}{3}
Therefore, SGSG=23\dfrac{{S'G}}{{SG}} = \dfrac{2}{3}.
Thus, option (B) is the correct answer.

Note: We know that the set of all points in a plane, the sum of whose distances from two fixed points in a plane is constant is an ellipse. These two fixed points are called the foci of the ellipse. The line joining the two foci of the ellipse is called the major axis of the ellipse and the line perpendicular to the major axis is called the minor axis of the ellipse. The endpoints of the ellipse are called the vertices of an ellipse.