Solveeit Logo

Question

Question: P is a point on or inside the boundary of a square ABCD, then the minimum value of ŠPAB + ŠPBC + ŠPC...

P is a point on or inside the boundary of a square ABCD, then the minimum value of ŠPAB + ŠPBC + ŠPCD + ŠPDA is equal to-

A

3π4\frac{3\pi}{4}

B

π4\frac{\pi}{4}

C

5π4\frac{5\pi}{4}

D

π2\frac{\pi}{2}

Answer

π4\frac{\pi}{4}

Explanation

Solution

Sol. Let the vertices of the square ABCD are 1, –1, i and –i in the Argand diagram.

Let P be represented by z then ŠPAB + ŠPBC + ŠPCD + ŠPDA

= arg (z414)\left( \frac{z^{4} - 1}{4} \right)= arg (z4 –1)

Since z4 also lies inside the square Ž 5π4\frac{5\pi}{4} ³ arg (z4 – 1) ³ 3π4\frac{3\pi}{4}