Solveeit Logo

Question

Question: f(x) = x - \sqrt{x^2 - 1}...

f(x) = x - \sqrt{x^2 - 1}

Answer
  • Domain: (,1][1,)(-\infty, -1] \cup [1, \infty)

  • Range: (,1](0,1](-\infty, -1] \cup (0, 1]

  • Inverse function: f1(x)=x2+12xf^{-1}(x) = \frac{x^2 + 1}{2x} for x(,1](0,1]x \in (-\infty, -1] \cup (0, 1].

Explanation

Solution

The function given is f(x)=xx21f(x) = x - \sqrt{x^2 - 1}.

  1. Domain: The term x21\sqrt{x^2 - 1} requires x210x^2 - 1 \ge 0, which means (x1)(x+1)0(x-1)(x+1) \ge 0. This inequality holds for x1x \le -1 or x1x \ge 1. The domain of f(x)f(x) is D=(,1][1,)D = (-\infty, -1] \cup [1, \infty).

  2. Range:

    • Consider x1x \ge 1. We can rewrite f(x)f(x) by multiplying by the conjugate: f(x)=(xx21)x+x21x+x21=x2(x21)x+x21=1x+x21f(x) = (x - \sqrt{x^2 - 1}) \frac{x + \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}} = \frac{x^2 - (x^2 - 1)}{x + \sqrt{x^2 - 1}} = \frac{1}{x + \sqrt{x^2 - 1}}. For x1x \ge 1, xx is positive and x210\sqrt{x^2 - 1} \ge 0. Thus, x+x21x + \sqrt{x^2 - 1} is positive. As xx \to \infty, x+x21x + \sqrt{x^2 - 1} \to \infty, so limxf(x)=limx1x+x21=0\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{x + \sqrt{x^2 - 1}} = 0. At x=1x = 1, f(1)=1121=1f(1) = 1 - \sqrt{1^2 - 1} = 1. The derivative f(x)=1xx21f'(x) = 1 - \frac{x}{\sqrt{x^2 - 1}} for x>1x > 1. Since xx21=x2x21=1+1x21>1\frac{x}{\sqrt{x^2 - 1}} = \sqrt{\frac{x^2}{x^2-1}} = \sqrt{1 + \frac{1}{x^2-1}} > 1 for x>1x > 1, f(x)<0f'(x) < 0. The function is decreasing on [1,)[1, \infty). The range for x[1,)x \in [1, \infty) is (0,1](0, 1].

    • Consider x1x \le -1. Let x=yx = -y where y1y \ge 1. f(x)=f(y)=y(y)21=yy21f(x) = f(-y) = -y - \sqrt{(-y)^2 - 1} = -y - \sqrt{y^2 - 1}. As yy \to \infty (i.e., xx \to -\infty), y-y \to -\infty and y21-\sqrt{y^2 - 1} \to -\infty. So, limxf(x)=\lim_{x \to -\infty} f(x) = -\infty. At x=1x = -1, f(1)=1(1)21=1f(-1) = -1 - \sqrt{(-1)^2 - 1} = -1. The derivative f(x)=1xx21f'(x) = 1 - \frac{x}{\sqrt{x^2 - 1}} for x<1x < -1. Let x=yx = -y with y>1y > 1. f(x)=1y(y)21=1+yy21f'(x) = 1 - \frac{-y}{\sqrt{(-y)^2 - 1}} = 1 + \frac{y}{\sqrt{y^2 - 1}}. For y>1y > 1, yy21>0\frac{y}{\sqrt{y^2 - 1}} > 0, so f(x)>1>0f'(x) > 1 > 0. The function is increasing on (,1](-\infty, -1]. The range for x(,1]x \in (-\infty, -1] is (,1](-\infty, -1].

    The total range of f(x)f(x) is the union of the ranges from the two intervals: R=(,1](0,1]R = (-\infty, -1] \cup (0, 1].

  3. Injectivity: The function is strictly increasing on (,1](-\infty, -1] and strictly decreasing on [1,)[1, \infty). Also, the ranges for these two intervals, (,1](-\infty, -1] and (0,1](0, 1], are disjoint. This means that any value in the range is attained for a unique value of xx in the domain. Therefore, the function f(x)f(x) is injective (one-to-one) on its domain.

  4. Inverse Function: Since f(x)f(x) is injective, its inverse f1(x)f^{-1}(x) exists. Let y=xx21y = x - \sqrt{x^2 - 1}. We want to solve for xx in terms of yy. yx=x21y - x = -\sqrt{x^2 - 1} xy=x21x - y = \sqrt{x^2 - 1} Squaring both sides: (xy)2=x21(x - y)^2 = x^2 - 1 x22xy+y2=x21x^2 - 2xy + y^2 = x^2 - 1 2xy+y2=1-2xy + y^2 = -1 2xy=y2+12xy = y^2 + 1 x=y2+12yx = \frac{y^2 + 1}{2y}. Thus, the inverse function is f1(y)=y2+12yf^{-1}(y) = \frac{y^2 + 1}{2y}. Replacing yy with xx, we get f1(x)=x2+12xf^{-1}(x) = \frac{x^2 + 1}{2x}. The domain of f1(x)f^{-1}(x) is the range of f(x)f(x), which is (,1](0,1](-\infty, -1] \cup (0, 1]. The range of f1(x)f^{-1}(x) is the domain of f(x)f(x), which is (,1][1,)(-\infty, -1] \cup [1, \infty).

Summary of properties:

  • Domain: (,1][1,)(-\infty, -1] \cup [1, \infty)
  • Range: (,1](0,1](-\infty, -1] \cup (0, 1]
  • Monotonicity: Increasing on (,1](-\infty, -1], Decreasing on [1,)[1, \infty)
  • Injectivity: Injective
  • Inverse function: f1(x)=x2+12xf^{-1}(x) = \frac{x^2 + 1}{2x} with domain (,1](0,1](-\infty, -1] \cup (0, 1].