Solveeit Logo

Question

Question: P and Q are two points with the position vectors \(3\overset{\to }{\mathop{a}}\,-2\overset{\to }{\ma...

P and Q are two points with the position vectors 3a2b3\overset{\to }{\mathop{a}}\,-2\overset{\to }{\mathop{b}}\, and a+b\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\, respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2:12:1 externally.

Explanation

Solution

Let us assume that for given two position vectors and We have two position vectors as: OP=3a2b\overset{\to }{\mathop{OP}}\,=3\overset{\to }{\mathop{a}}\,-2\overset{\to }{\mathop{b}}\, and OQ=a+b\overset{\to }{\mathop{OQ}}\,=\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,. It is also given that a position vector OR\overset{\to }{\mathop{OR}}\,divides the line segment PQ externally in ratio 2:12:1. So, we need to find OR\overset{\to }{\mathop{OR}}\,.

Complete step-by-step solution:
By using the section formula for external division, i.e. r=m×bn×amn\overset{\to }{\mathop{r}}\,=\dfrac{m\times \overset{\to }{\mathop{b}}\,-n\times \overset{\to }{\mathop{a}}\,}{m-n}, find the coordinates of vector OR\overset{\to }{\mathop{OR}}\,, i.e. position vector of point R.

From the above diagram, we have two points P and Q whose position vectors are 3a2b3\overset{\to }{\mathop{a}}\,-2\overset{\to }{\mathop{b}}\, and a+b\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\, respectively. So, we get two vectors as:
OP=3a2b......(1)\overset{\to }{\mathop{OP}}\,=3\overset{\to }{\mathop{a}}\,-2\overset{\to }{\mathop{b}}\,......(1)
OQ=a+b......(2)\overset{\to }{\mathop{OQ}}\,=\overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\,......(2)
Since it is given that position vector of point R, i.e. OR\overset{\to }{\mathop{OR}}\, divides the line segment in ratio 2:12:1 externally.
So, by using section formula for external division r=m×bn×amn\overset{\to }{\mathop{r}}\,=\dfrac{m\times \overset{\to }{\mathop{b}}\,-n\times \overset{\to }{\mathop{a}}\,}{m-n} for vector OR\overset{\to }{\mathop{OR}}\,, we get:
OR=2×OQ1×OP21......(3)\overset{\to }{\mathop{OR}}\,=\dfrac{2\times \overset{\to }{\mathop{OQ}}\,-1\times \overset{\to }{\mathop{OP}}\,}{2-1}......(3)
Put the values of equation (1) and (2) in equation (3), we get:

& \overset{\to }{\mathop{OR}}\,=\dfrac{2\times \left( \overset{\to }{\mathop{a}}\,+\overset{\to }{\mathop{b}}\, \right)-1\times \left( \overset{\to }{\mathop{3a}}\,-2\overset{\to }{\mathop{b}}\, \right)}{2-1} \\\ & =2\overset{\to }{\mathop{a}}\,+2\overset{\to }{\mathop{b}}\,-3\overset{\to }{\mathop{a}}\,+2\overset{\to }{\mathop{b}}\, \\\ & =-\overset{\to }{\mathop{a}}\,+4\overset{\to }{\mathop{b}}\, \end{aligned}$$ **Hence, position vector of point R is $-\overset{\to }{\mathop{a}}\,+4\overset{\to }{\mathop{b}}\,$** **Note:** As it is mentioned in the question that the position vector of R divides line segment PQ externally, so we need to apply section formula for external division. Students might use the section formula for internal division, i.e. $\overset{\to }{\mathop{r}}\,=\dfrac{m\times \overset{\to }{\mathop{b}}\,+n\times \overset{\to }{\mathop{a}}\,}{m+n}$ instead of section formula for external division, i.e. $\overset{\to }{\mathop{r}}\,=\dfrac{m\times \overset{\to }{\mathop{b}}\,-n\times \overset{\to }{\mathop{a}}\,}{m-n}$. Also, while drawing the diagram of the vectors, the position vector of R does not intersect the line segment PQ. But it lies external to the line segment PQ as shown in the diagram above.