Solveeit Logo

Question

Question: Oxygen at 1 atmosphere and \({{\text{0}}^{\text{0}}}\text{C}\) has a density of\[\text{1}\text{.4290...

Oxygen at 1 atmosphere and 00C{{\text{0}}^{\text{0}}}\text{C} has a density of1.4290 g L-1\text{1}\text{.4290 g }{{\text{L}}^{\text{-1}}}. Find the rms speed of the oxygen molecule.

Explanation

Solution

To solve this type of solution using the formula of root mean square speedVrms{{\text{V}}_{\text{rms}}}. It is related to the density of gas and pressure by the relation Vrms=3Pd{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3P}}{\text{d}}}.Use this formula to find out the RMS speed of oxygen at 1 atmosphere and 00{{0}^{0}} temperature.

Complete step by step answer:
The root-mean-square speed is the measure of the speed of particles in a gas, defined as the square root of the average velocity-squared of the molecules in a gas.
Therefore the Vrms{{\text{V}}_{\text{rms}}} can be written as:
Vrms=3Pd{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3P}}{\text{d}}}
Where d is the density of the gas.
P is the pressure in the Pascal’s
Here we are given the oxygen gas at a 1-atmosphere pressure.
d=1.4290 gL-1\text{d=1}\text{.4290 g}{{\text{L}}^{\text{-1}}}
Let us substitute all values in the Vrms{{\text{V}}_{\text{rms}}} equation we get,
Vrms=3×(1 atm)(1.4290 gL-1){{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3}\times \text{(1 atm)}}{(1.4290\text{ g}{{\text{L}}^{\text{-1}}})}}
Note that we have to convert the pressure which is in atm to the pascal. since we know that,
1 atm=101.3×103 Pa=1.013×105 Pa1\text{ atm=101}\text{.3}\times \text{1}{{\text{0}}^{3}}\text{ Pa}=1.013\times {{10}^{5}}\text{ Pa}
Thus we get,
Vrms=3×(101.3×103)(1.4290 gL-1){{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3}\times \text{(101}\text{.3}\times \text{1}{{\text{0}}^{\text{3}}}\text{)}}{(1.4290\text{ g}{{\text{L}}^{\text{-1}}})}}
Vrms=303900 Pa(1.4290 gL-1){{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{303900\text{ Pa}}{(1.4290\text{ g}{{\text{L}}^{\text{-1}}})}}
Vrms=461.15 m/s{{\text{V}}_{\text{rms}}}\text{=461}\text{.15 m/s}
Hence, the root means square speed of oxygen gas is461.15 m/s\text{461}\text{.15 m/s}.

Additional information:
How fast the molecules move indirectly proportional to their absolute temperature (T) and inversely proportional to the mass of the gas-particle.
Vrms=3kTm{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3kT}}{\text{m}}}
Since we know that,k=RNA\text{k=}\dfrac{\text{R}}{{{\text{N}}_{\text{A}}}} where NA{{\text{N}}_{\text{A}}}is Avogadro's number
But NA=mM{{\text{N}}_{\text{A}}}\text{=}\dfrac{\text{m}}{\text{M}} this, km=RM\dfrac{\text{k}}{\text{m}}\text{=}\dfrac{\text{R}}{\text{M}}
The root means square speed is modified as theVrms{{\text{V}}_{\text{rms}}}.
Vrms=3RTM{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3RT}}{\text{M}}} (1)
Where, Vrms{{\text{V}}_{\text{rms}}} is the root mean square speed
R is the gas constant
T is the absolute temperature in kelvin
M is the molar mass
We know that, for an ideal gas
PV=RT when,n=1 \begin{aligned} & \text{PV=RT} \\\ & \text{when,n=1} \\\ \end{aligned}
On substituting in (1) we get,
Vrms=3PVM{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3PV}}{\text{M}}}
But, density is given by the ratio of mass to volume.
d=MV\text{d=}\dfrac{\text{M}}{\text{V}}
Thus the equation becomes,
Vrms=3Pd{{\text{V}}_{\text{rms}}}\text{=}\sqrt{\dfrac{\text{3P}}{\text{d}}}

Note:
In calculating the rms speed use the pressure in the pascal. Before solving such questions first convert the atmospheric pressure to the pascals by the relation.
1 atm=101.3×103 Pa1\text{ atm=101}\text{.3}\times \text{1}{{\text{0}}^{3}}\text{ Pa}
The condition of 00c{{0}^{0}}\text{c} and of the 1 atm pressure is called the STP \text{STP}~conditions commonly used in scientific calculations.