Solveeit Logo

Question

Question: \(\overset{\rightarrow}{a}\)and \(\overset{\rightarrow}{b}\)are two given vectors. On these vectors ...

a\overset{\rightarrow}{a}and b\overset{\rightarrow}{b}are two given vectors. On these vectors as adjacent sides, a parallelogram is constructed. The vector which is the altitude of the parallelogram and perpendicular to a\overset{\rightarrow}{a} is given by-

A

ab\overset{\rightarrow}{a}–\overset{\rightarrow}{b}

B

(abb2)\left( \frac { \vec { a } \cdot \vec { b } } { | \vec { b } | ^ { 2 } } \right) ba\overset{\rightarrow}{b}–\overset{\rightarrow}{a}

C

b×(a×b)b2\frac{\overset{\rightarrow}{b} \times (\overset{\rightarrow}{a} \times \overset{\rightarrow}{b})}{|\overset{\rightarrow}{b}|^{2}}

D

a+b\overset{\rightarrow}{a} + \overset{\rightarrow}{b}

Answer

ab\overset{\rightarrow}{a}–\overset{\rightarrow}{b}

Explanation

Solution

The altitude required is

BN\overrightarrow { \mathrm { BN } } = OB\overrightarrow { \mathrm { OB } }

= projection of CB\overrightarrow { \mathrm { CB } } on OA\overrightarrow { \mathrm { OA } }

= ( b\vec { b } .)

= =(ba)aa2\frac { ( \vec { b } \cdot \vec { a } ) \vec { a } } { | \vec { a } | ^ { 2 } }b\vec { b } .