Solveeit Logo

Question

Question: \(\overset{\rightarrow}{a}\)and \(\overset{\rightarrow}{b}\)are two given vectors. On these vectors ...

a\overset{\rightarrow}{a}and b\overset{\rightarrow}{b}are two given vectors. On these vectors as adjacent sides, a parallelogram is constructed. The vector which is the altitude of the parallelogram and perpendicular to a\overset{\rightarrow}{a}is given by-

A

(aba2)\left( \frac { \vec { a } \cdot \vec { b } } { | \vec { a } | ^ { 2 } } \right) ab\overset{\rightarrow}{a}–\overset{\rightarrow}{b}

B

(abb2)\left( \frac { \vec { a } \cdot \vec { b } } { | \vec { b } | ^ { 2 } } \right) ba\overset{\rightarrow}{b}–\overset{\rightarrow}{a}

C

b×(a×b)b2\frac{\overset{\rightarrow}{b} \times (\overset{\rightarrow}{a} \times \overset{\rightarrow}{b})}{|\overset{\rightarrow}{b}|^{2}}

D

(aba2)\left( \frac { \vec { a } \cdot \vec { b } } { | \vec { a } | ^ { 2 } } \right) a+b\overset{\rightarrow}{a} + \overset{\rightarrow}{b}

Answer

\left( \frac { \vec { a } \cdot \vec { b } } { | \vec { a } | ^ { 2 } } \right)$$\overset{\rightarrow}{a}–\overset{\rightarrow}{b}

Explanation

Solution

The altitude required is BN\overset{\rightarrow}{BN}

BN\overset{\rightarrow}{BN} = ON\overset{\rightarrow}{ON}OB\overset{\rightarrow}{OB}

= projection of CB\overset{\rightarrow}{CB} on OA\overset{\rightarrow}{OA}b\overset{\rightarrow}{b}

= (b\overset{\rightarrow}{b}.a\overset{됀}{a})a\overset{됀}{a}b\overset{\rightarrow}{b}

= (baa)\left( \vec { b } \cdot \frac { \vec { a } } { | \vec { a } | } \right) aa\frac{\overset{\rightarrow}{a}}{|\overset{\rightarrow}{a}|}b\overset{\rightarrow}{b} = (b.a)aa2\frac{(\overset{\rightarrow}{b}.\overset{\rightarrow}{a})\overset{\rightarrow}{a}}{|\overset{\rightarrow}{a}|^{2}}b\overset{\rightarrow}{b}