Solveeit Logo

Question

Question: $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overr...

a×b=c,b×c=d\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{d}, where c0\overrightarrow{c} \neq 0, then

A

a=c,b=1|\overrightarrow{a}| = |\overrightarrow{c}|, |\overrightarrow{b}| = 1

B

a=b,c=1|\overrightarrow{a}| = |\overrightarrow{b}|, |\overrightarrow{c}| = 1

C

b=c,a=1|\overrightarrow{b}| = |\overrightarrow{c}|, |\overrightarrow{a}| = 1

D

a=b=c=1|\overrightarrow{a}| = |\overrightarrow{b}| = |\overrightarrow{c}| = 1

Answer

(1)

Explanation

Solution

Given the vector equations:

  1. a×b=c\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}
  2. b×c=d\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{d}

Also, c0\overrightarrow{c} \neq 0.

From equation (1), c\overrightarrow{c} is perpendicular to b\overrightarrow{b}. Therefore, the angle between b\overrightarrow{b} and c\overrightarrow{c} is 9090^\circ. From equation (2), the magnitude of d\overrightarrow{d} is given by: d=bcsin(90)=bc|\overrightarrow{d}| = |\overrightarrow{b}| |\overrightarrow{c}| \sin(90^\circ) = |\overrightarrow{b}| |\overrightarrow{c}| (Equation A)

Substitute c=a×b\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b} into the second equation: d=b×(a×b)\overrightarrow{d} = \overrightarrow{b} \times (\overrightarrow{a} \times \overrightarrow{b}) Using the vector triple product identity A×(B×C)=(AC)B(AB)C\overrightarrow{A} \times (\overrightarrow{B} \times \overrightarrow{C}) = (\overrightarrow{A} \cdot \overrightarrow{C})\overrightarrow{B} - (\overrightarrow{A} \cdot \overrightarrow{B})\overrightarrow{C}: d=(bb)a(ba)b\overrightarrow{d} = (\overrightarrow{b} \cdot \overrightarrow{b})\overrightarrow{a} - (\overrightarrow{b} \cdot \overrightarrow{a})\overrightarrow{b} d=b2a(ab)b\overrightarrow{d} = |\overrightarrow{b}|^2 \overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{b}

For the options to be uniquely determined, we need an additional constraint. A common implicit constraint in such problems is that d\overrightarrow{d} is parallel to a\overrightarrow{a}. If d\overrightarrow{d} is parallel to a\overrightarrow{a}, then the component of d\overrightarrow{d} along b\overrightarrow{b} must be zero. This means (ab)b=0(\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{b} = \overrightarrow{0}. Since b0\overrightarrow{b} \neq \overrightarrow{0} (otherwise c=0\overrightarrow{c} = \overrightarrow{0}), it implies ab=0\overrightarrow{a} \cdot \overrightarrow{b} = 0. This means a\overrightarrow{a} is perpendicular to b\overrightarrow{b} (i.e., the angle between them, θab\theta_{ab}, is 9090^\circ).

Under the condition ab\overrightarrow{a} \perp \overrightarrow{b}:

  1. The magnitude of c\overrightarrow{c} becomes: c=absinθab=absin(90)=ab|\overrightarrow{c}| = |\overrightarrow{a}| |\overrightarrow{b}| \sin \theta_{ab} = |\overrightarrow{a}| |\overrightarrow{b}| \sin(90^\circ) = |\overrightarrow{a}| |\overrightarrow{b}| (Equation B)
  2. The expression for d\overrightarrow{d} simplifies to: d=b2a(0)b=b2a\overrightarrow{d} = |\overrightarrow{b}|^2 \overrightarrow{a} - (0)\overrightarrow{b} = |\overrightarrow{b}|^2 \overrightarrow{a} Taking the magnitude, d=b2a|\overrightarrow{d}| = |\overrightarrow{b}|^2 |\overrightarrow{a}| (Equation C)

Now, equate Equation A and Equation C: bc=b2a|\overrightarrow{b}| |\overrightarrow{c}| = |\overrightarrow{b}|^2 |\overrightarrow{a}| Since b0|\overrightarrow{b}| \neq 0, we can divide by b|\overrightarrow{b}|: c=ba|\overrightarrow{c}| = |\overrightarrow{b}| |\overrightarrow{a}| This relation is identical to Equation B, confirming consistency.

Now, let's check which option satisfies these conditions. Consider option (1): a=c|\overrightarrow{a}| = |\overrightarrow{c}| and b=1|\overrightarrow{b}| = 1. Substitute these into the derived relation c=ab|\overrightarrow{c}| = |\overrightarrow{a}| |\overrightarrow{b}|: a=a(1)|\overrightarrow{a}| = |\overrightarrow{a}| (1) a=a|\overrightarrow{a}| = |\overrightarrow{a}| This is consistent. Therefore, option (1) is a possible solution under the implicit assumption that d\overrightarrow{d} is parallel to a\overrightarrow{a}.