Solveeit Logo

Question

Question: $\overrightarrow{a}$, $\overrightarrow{b}$ and $\overrightarrow{c}$ are coplanar vectors such that $...

a\overrightarrow{a}, b\overrightarrow{b} and c\overrightarrow{c} are coplanar vectors such that a=2|\overrightarrow{a}|=2, b=3|\overrightarrow{b}|=3 & ab=30\overrightarrow{a} \land \overrightarrow{b} = 30^{\circ}. A unit vector d\overrightarrow{d} is perpendicular to all of them. If (a×b)×(c×d)=i^6j^3+k^3(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = \frac{\hat{i}}{6} - \frac{\hat{j}}{3} + \frac{\hat{k}}{3}, then c.i^+c.j^+c.k^|\overrightarrow{c}.\hat{i}| + |\overrightarrow{c}.\hat{j}| + |\overrightarrow{c}.\hat{k}| is equal to ____

A

518\frac{5}{18}

B

718\frac{7}{18}

C

1118\frac{11}{18}

D

1318\frac{13}{18}

Answer

518\frac{5}{18}

Explanation

Solution

The coplanarity of a,b,c\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} implies (a×b)c=0(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c} = 0. The magnitude of the cross product a×b=absin(30)=2×3×12=3|\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}||\overrightarrow{b}|\sin(30^\circ) = 2 \times 3 \times \frac{1}{2} = 3. Since d\overrightarrow{d} is a unit vector perpendicular to a\overrightarrow{a} and b\overrightarrow{b}, a×b\overrightarrow{a} \times \overrightarrow{b} is parallel to d\overrightarrow{d}, so a×b=±3d\overrightarrow{a} \times \overrightarrow{b} = \pm 3\overrightarrow{d}.

Using the vector triple product identity X×(Y×Z)=(XZ)Y(XY)Z\vec{X} \times (\vec{Y} \times \vec{Z}) = (\vec{X} \cdot \vec{Z})\vec{Y} - (\vec{X} \cdot \vec{Y})\vec{Z}, we simplify the given equation: (a×b)×(c×d)=(±3d)×(c×d)(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = (\pm 3\overrightarrow{d}) \times (\overrightarrow{c} \times \overrightarrow{d}) =±3[d×(c×d)]= \pm 3 [\overrightarrow{d} \times (\overrightarrow{c} \times \overrightarrow{d})] =±3[(dd)c(dc)d]= \pm 3 [(\overrightarrow{d} \cdot \overrightarrow{d})\overrightarrow{c} - (\overrightarrow{d} \cdot \overrightarrow{c})\overrightarrow{d}] Since d\overrightarrow{d} is a unit vector, dd=1\overrightarrow{d} \cdot \overrightarrow{d} = 1. Since d\overrightarrow{d} is perpendicular to c\overrightarrow{c}, dc=0\overrightarrow{d} \cdot \overrightarrow{c} = 0. So, the expression becomes ±3[1c0d]=±3c\pm 3 [1 \cdot \overrightarrow{c} - 0 \cdot \overrightarrow{d}] = \pm 3\overrightarrow{c}.

Equating this to the given vector: ±3c=i^6j^3+k^3\pm 3\overrightarrow{c} = \frac{\hat{i}}{6} - \frac{\hat{j}}{3} + \frac{\hat{k}}{3} c=±13(i^6j^3+k^3)\overrightarrow{c} = \pm \frac{1}{3} \left( \frac{\hat{i}}{6} - \frac{\hat{j}}{3} + \frac{\hat{k}}{3} \right)

Let c=cxi^+cyj^+czk^\overrightarrow{c} = c_x \hat{i} + c_y \hat{j} + c_z \hat{k}. We need to find cx+cy+cz|c_x| + |c_y| + |c_z|. In either case (±\pm): c=13(i^6j^3+k^3)\overrightarrow{c} = \frac{1}{3} \left( \frac{\hat{i}}{6} - \frac{\hat{j}}{3} + \frac{\hat{k}}{3} \right) or c=13(i^6j^3+k^3)\overrightarrow{c} = -\frac{1}{3} \left( \frac{\hat{i}}{6} - \frac{\hat{j}}{3} + \frac{\hat{k}}{3} \right). The components of c\overrightarrow{c} will be ±118\pm \frac{1}{18}, 19\mp \frac{1}{9}, ±19\pm \frac{1}{9}. The absolute values of the components are 118\frac{1}{18}, 19\frac{1}{9}, 19\frac{1}{9}.

Therefore, c.i^+c.j^+c.k^=±118+19+±19=118+19+19=118+218+218=518|\overrightarrow{c}.\hat{i}| + |\overrightarrow{c}.\hat{j}| + |\overrightarrow{c}.\hat{k}| = \left|\pm \frac{1}{18}\right| + \left|\mp \frac{1}{9}\right| + \left|\pm \frac{1}{9}\right| = \frac{1}{18} + \frac{1}{9} + \frac{1}{9} = \frac{1}{18} + \frac{2}{18} + \frac{2}{18} = \frac{5}{18}.