Solveeit Logo

Question

Question: Using the identity, $sin^4x = \frac{3}{8} - \frac{1}{2}cos2x + \frac{1}{8}cos4x$ or otherwise, if th...

Using the identity, sin4x=3812cos2x+18cos4xsin^4x = \frac{3}{8} - \frac{1}{2}cos2x + \frac{1}{8}cos4x or otherwise, if the value of sin4(π7)+sin4(3π7)+sin4(5π7)=absin^4(\frac{\pi}{7}) + sin^4(\frac{3\pi}{7}) + sin^4(\frac{5\pi}{7}) = \frac{a}{b} where a and b are coprime, then the value of (a - b) is

A

1

B

2

C

3

D

5

Answer

5

Explanation

Solution

The sum is S=sin4(π7)+sin4(3π7)+sin4(5π7)S = sin^4(\frac{\pi}{7}) + sin^4(\frac{3\pi}{7}) + sin^4(\frac{5\pi}{7}). Using the identity sin4x=3812cos(2x)+18cos(4x)sin^4x = \frac{3}{8} - \frac{1}{2}cos(2x) + \frac{1}{8}cos(4x): S=x{π7,3π7,5π7}(3812cos(2x)+18cos(4x))S = \sum_{x \in \{\frac{\pi}{7}, \frac{3\pi}{7}, \frac{5\pi}{7}\}} (\frac{3}{8} - \frac{1}{2}cos(2x) + \frac{1}{8}cos(4x)) S=3×3812cos(2x)+18cos(4x)S = 3 \times \frac{3}{8} - \frac{1}{2} \sum cos(2x) + \frac{1}{8} \sum cos(4x) S=9812(cos(2π7)+cos(6π7)+cos(10π7))+18(cos(4π7)+cos(12π7)+cos(20π7))S = \frac{9}{8} - \frac{1}{2} (cos(\frac{2\pi}{7}) + cos(\frac{6\pi}{7}) + cos(\frac{10\pi}{7})) + \frac{1}{8} (cos(\frac{4\pi}{7}) + cos(\frac{12\pi}{7}) + cos(\frac{20\pi}{7})) Using the property that for n=7n=7, k=1n1cos(2kπn)=1\sum_{k=1}^{n-1} cos(\frac{2k\pi}{n}) = -1 and k=1n1cos(4kπn)=1\sum_{k=1}^{n-1} cos(\frac{4k\pi}{n}) = -1. The sums of cosines are: cos(2π7)+cos(6π7)+cos(10π7)=cos(2π7)+cos(6π7)+cos(4π7)=12cos(\frac{2\pi}{7}) + cos(\frac{6\pi}{7}) + cos(\frac{10\pi}{7}) = cos(\frac{2\pi}{7}) + cos(\frac{6\pi}{7}) + cos(\frac{4\pi}{7}) = -\frac{1}{2} cos(4π7)+cos(12π7)+cos(20π7)=cos(4π7)+cos(2π7)+cos(6π7)=12cos(\frac{4\pi}{7}) + cos(\frac{12\pi}{7}) + cos(\frac{20\pi}{7}) = cos(\frac{4\pi}{7}) + cos(\frac{2\pi}{7}) + cos(\frac{6\pi}{7}) = -\frac{1}{2} S=9812(12)+18(12)=98+14116=18+4116=2116S = \frac{9}{8} - \frac{1}{2}(-\frac{1}{2}) + \frac{1}{8}(-\frac{1}{2}) = \frac{9}{8} + \frac{1}{4} - \frac{1}{16} = \frac{18+4-1}{16} = \frac{21}{16}. Given S=abS = \frac{a}{b}, we have a=21a=21 and b=16b=16. ab=2116=5a-b = 21-16 = 5.