Question
Question: Using the identity, $sin^4x = \frac{3}{8} - \frac{1}{2}cos2x + \frac{1}{8}cos4x$ or otherwise, if th...
Using the identity, sin4x=83−21cos2x+81cos4x or otherwise, if the value of sin4(7π)+sin4(73π)+sin4(75π)=ba where a and b are coprime, then the value of (a - b) is

1
2
3
5
5
Solution
The sum is S=sin4(7π)+sin4(73π)+sin4(75π). Using the identity sin4x=83−21cos(2x)+81cos(4x): S=∑x∈{7π,73π,75π}(83−21cos(2x)+81cos(4x)) S=3×83−21∑cos(2x)+81∑cos(4x) S=89−21(cos(72π)+cos(76π)+cos(710π))+81(cos(74π)+cos(712π)+cos(720π)) Using the property that for n=7, ∑k=1n−1cos(n2kπ)=−1 and ∑k=1n−1cos(n4kπ)=−1. The sums of cosines are: cos(72π)+cos(76π)+cos(710π)=cos(72π)+cos(76π)+cos(74π)=−21 cos(74π)+cos(712π)+cos(720π)=cos(74π)+cos(72π)+cos(76π)=−21 S=89−21(−21)+81(−21)=89+41−161=1618+4−1=1621. Given S=ba, we have a=21 and b=16. a−b=21−16=5.
