Solveeit Logo

Question

Question: In a triangle ABC, let $\sqrt{\sin A} + \sqrt{\sin B} + \sqrt{\sin C} = \sqrt{12 \cos \frac{A}{2} \c...

In a triangle ABC, let sinA+sinB+sinC=12cosA2cosB2cosC2\sqrt{\sin A} + \sqrt{\sin B} + \sqrt{\sin C} = \sqrt{12 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}, then the value of (sin2Asin2B+sin2Bsin2C+sin2Csin2A)(\frac{\sin^2 A}{\sin^2 B} + \frac{\sin^2 B}{\sin^2 C} + \frac{\sin^2 C}{\sin^2 A}), is

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

The given condition is sinA+sinB+sinC=12cosA2cosB2cosC2\sqrt{\sin A} + \sqrt{\sin B} + \sqrt{\sin C} = \sqrt{12 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}}. For an equilateral triangle (A=B=C=60A=B=C=60^\circ), LHS = 3sin60=3323\sqrt{\sin 60^\circ} = 3\sqrt{\frac{\sqrt{3}}{2}} and RHS = 12cos330=12(32)3=12338=932\sqrt{12 \cos^3 30^\circ} = \sqrt{12(\frac{\sqrt{3}}{2})^3} = \sqrt{12 \frac{3\sqrt{3}}{8}} = \sqrt{\frac{9\sqrt{3}}{2}}. Squaring both sides, 932=9329 \cdot \frac{\sqrt{3}}{2} = \frac{9\sqrt{3}}{2}, which matches.

Squaring the given equation and using identities, we can show that the condition implies A=B=C=60A=B=C=60^\circ. Since A=B=CA=B=C, sinA=sinB=sinC\sin A = \sin B = \sin C. Therefore, sin2Asin2B=1\frac{\sin^2 A}{\sin^2 B} = 1, sin2Bsin2C=1\frac{\sin^2 B}{\sin^2 C} = 1, and sin2Csin2A=1\frac{\sin^2 C}{\sin^2 A} = 1. The value of the expression is 1+1+1=31 + 1 + 1 = 3.