Solveeit Logo

Question

Question: If $x, y \in R, X = [x \quad y \quad 1]^T, A = \begin{bmatrix} 5 & 3 & -1 \\ 3 & 2 & -1 \\ -1 & -1 &...

If x,yR,X=[xy1]T,A=[531321111]x, y \in R, X = [x \quad y \quad 1]^T, A = \begin{bmatrix} 5 & 3 & -1 \\ 3 & 2 & -1 \\ -1 & -1 & 1 \end{bmatrix} and XTAX=0X^TAX = 0 then 2y+x=___2y + x = \_\_\_

Answer

3

Explanation

Solution

The given equation is XTAX=0X^TAX = 0. XTAX=[xy1][531321111][xy1]X^TAX = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 5 & 3 & -1 \\ 3 & 2 & -1 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} XTAX=[xy1][5x+3y13x+2y1xy+1]X^TAX = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} 5x + 3y - 1 \\ 3x + 2y - 1 \\ -x - y + 1 \end{bmatrix} XTAX=x(5x+3y1)+y(3x+2y1)+1(xy+1)X^TAX = x(5x + 3y - 1) + y(3x + 2y - 1) + 1(-x - y + 1) XTAX=5x2+3xyx+3xy+2y2yxy+1X^TAX = 5x^2 + 3xy - x + 3xy + 2y^2 - y - x - y + 1 XTAX=5x2+6xy+2y22x2y+1X^TAX = 5x^2 + 6xy + 2y^2 - 2x - 2y + 1 Given XTAX=0X^TAX = 0, so 5x2+6xy+2y22x2y+1=05x^2 + 6xy + 2y^2 - 2x - 2y + 1 = 0. Let k=2y+xk = 2y + x. Then x=k2yx = k - 2y. Substituting xx in the equation: 5(k2y)2+6(k2y)y+2y22(k2y)2y+1=05(k - 2y)^2 + 6(k - 2y)y + 2y^2 - 2(k - 2y) - 2y + 1 = 0 5(k24ky+4y2)+6ky12y2+2y22k+4y2y+1=05(k^2 - 4ky + 4y^2) + 6ky - 12y^2 + 2y^2 - 2k + 4y - 2y + 1 = 0 5k220ky+20y2+6ky12y2+2y22k+2y+1=05k^2 - 20ky + 20y^2 + 6ky - 12y^2 + 2y^2 - 2k + 2y + 1 = 0 (2012+2)y2+(20k+6k+2)y+(5k22k+1)=0(20 - 12 + 2)y^2 + (-20k + 6k + 2)y + (5k^2 - 2k + 1) = 0 10y2+(14k+2)y+(5k22k+1)=010y^2 + (-14k + 2)y + (5k^2 - 2k + 1) = 0 For real solutions of yy, the discriminant must be non-negative. Δ=(14k+2)24(10)(5k22k+1)0\Delta = (-14k + 2)^2 - 4(10)(5k^2 - 2k + 1) \ge 0 4(17k)240(5k22k+1)04(1 - 7k)^2 - 40(5k^2 - 2k + 1) \ge 0 4(114k+49k2)200k2+80k4004(1 - 14k + 49k^2) - 200k^2 + 80k - 40 \ge 0 456k+196k2200k2+80k4004 - 56k + 196k^2 - 200k^2 + 80k - 40 \ge 0 4k2+24k360-4k^2 + 24k - 36 \ge 0 k26k+90k^2 - 6k + 9 \le 0 (k3)20(k - 3)^2 \le 0 Since (k3)2(k-3)^2 cannot be negative, (k3)2=0(k-3)^2 = 0, which implies k=3k = 3. Therefore, 2y+x=32y + x = 3.