Solveeit Logo

Question

Question: Out of the following functions representing motion of a particle which represents SHM? 1\. x = sin3...

Out of the following functions representing motion of a particle which represents SHM?

1. x = sin3 ω\omegat

2. x = 1 + ω\omegat + ω\omega2t2

3. x = cos ω\omegat + cos 3ω\omegat + cos 5ω\omegat

4. x = sinω\omegat + cosω\omegat

A

Only 1

B

Only 1 and 3

C

Only 1 and 4

D

Only 4

Answer

Only 4

Explanation

Solution

(1) x=sin3ωt=14(3sinωtsin3ωt)x = \sin^{3}\omega t = \frac{1}{4}(3\sin\omega t - \sin 3\omega t)

(sin3θ=3sinθ4sin3θ)(\because\sin 3\theta = 3\sin\theta - 4\sin^{3}\theta)

It represent a periodic motion with time period

T=2πωT = \frac{2\pi}{\omega} but not SHM.

(2) x=1+ωt+ω2t2x = 1 + \omega t + \omega^{2}t^{2}

It represents a non- periodic motion

(3) x=cosωt+cos3ωt+cos5ωtx = \cos\omega t + \cos 3\omega t + \cos 5\omega t

It represent a periodic motion with time period T=2πωT = \frac{2\pi}{\omega} but not SHM.

(4) sinωt+cosωt=2[12sinωt+12cosωt]\sin\omega t + \cos\omega t = \sqrt{2}\left\lbrack \frac{1}{\sqrt{2}}\sin\omega t + \frac{1}{\sqrt{2}}\cos\omega t \right\rbrack

=2[sinωtcosπ4+sinπ4cosωt]= \sqrt{2}\left\lbrack \sin\omega t\cos\frac{\pi}{4} + \sin\frac{\pi}{4}\cos\omega t \right\rbrack

=2sin(ωt)+π4= \sqrt{2}\sin(\omega t) + \frac{\pi}{4}

It represents a SHM with time period T=2πωT = \frac{2\pi}{\omega}