Solveeit Logo

Question

Question: Out of a group of 200 students (Who know at least one language), \(100\) students know English, \[80...

Out of a group of 200 students (Who know at least one language), 100100 students know English, 8080 students know Kannada, 7070 students know Hindi. If 2020 students know all the three languages. Find the number of students who know exactly two languages.

Explanation

Solution

To solve this question, we will use the formula of set theory that is n(ABC)=n(A)+n(B)+n(C)[n(AB)+n(BC)+n(CA)]+n(ABC)n\left( A\bigcup B\bigcup C \right)=n\left( A \right)+n\left( B \right)+n\left( C \right)-\left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]+n\left( A\bigcap B\bigcap C \right), where n(A),n(B),n(C)n\left( A \right),n\left( B \right),n\left( C \right) are number of students who know one language only, n(AB),n(BC),n(CA)n\left( A\bigcap B \right),n\left( B\bigcap C \right),n\left( C\bigcap A \right) are number of students who know two languages, n(ABC)n\left( A\bigcap B\bigcap C \right) is number of students who know three languages and n(ABC)n\left( A\bigcup B\bigcup C \right) is number of all students who know any languages. We will substitute corresponding values and will simplify it to get the required answer.

Complete step by step solution:
Let consider that AA is set of students who know English, BB be the set of the students who know Kannada and CC is set of students who know Hindi. So, from the questions, we have:
n(A)=100 n(B)=80 n(C)=70 \begin{aligned} & \Rightarrow n\left( A \right)=100 \\\ & \Rightarrow n\left( B \right)=80 \\\ & \Rightarrow n\left( C \right)=70 \\\ \end{aligned}
Total number of students, n(ABC)=200n\left( A\bigcup B\bigcup C \right)=200
And number of students who know all the three languages, n(ABC)=20n\left( A\bigcap B\bigcap C \right)=20
Now, we will use the related formula.
n(ABC)=n(A)+n(B)+n(C)[n(AB)+n(BC)+n(CA)]+n(ABC)\Rightarrow n\left( A\bigcup B\bigcup C \right)=n\left( A \right)+n\left( B \right)+n\left( C \right)-\left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]+n\left( A\bigcap B\bigcap C \right)
Here, we will substitute the corresponding values as:
200=100+80+70[n(AB)+n(BC)+n(CA)]+20\Rightarrow 200=100+80+70-\left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]+20
We will get 250250 after adding 100,80100,80 and 7070 as:
200=250[n(AB)+n(BC)+n(CA)]+20\Rightarrow 200=250-\left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]+20
Now, we will get 270270 when we will add 250250 and 2020 as:
200=270[n(AB)+n(BC)+n(CA)]\Rightarrow 200=270-\left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]
After changing the places in the above step, we can write the above step as:
[n(AB)+n(BC)+n(CA)]=270200\Rightarrow \left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]=270-200
Here, we will do the subtraction and will get 7070 after subtracting 200200 from 270270 as:
[n(AB)+n(BC)+n(CA)]=70\Rightarrow \left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]=70
So, the total number of students who know two languages is 7070.

Note: Here, we will check whether the solution is correct or not by using the formula.
n(ABC)=n(A)+n(B)+n(C)[n(AB)+n(BC)+n(CA)]+n(ABC)\Rightarrow n\left( A\bigcup B\bigcup C \right)=n\left( A \right)+n\left( B \right)+n\left( C \right)-\left[ n\left( A\bigcap B \right)+n\left( B\bigcap C \right)+n\left( C\bigcap A \right) \right]+n\left( A\bigcap B\bigcap C \right)
Substitute the corresponding values in the formula as:
200=100+80+7070+20\Rightarrow 200=100+80+70-70+20
Here, we will cancel out the equal like term and will do the addition as:
200=180+20 200=200 \begin{aligned} & \Rightarrow 200=180+20 \\\ & \Rightarrow 200=200 \\\ \end{aligned}
Since, L.H.S.=R.H.S.L.H.S.=R.H.S.
Hence, the solution is correct.