Solveeit Logo

Question

Question: Orthocenter of the triangle formed by joining the points\(\left( 2,\frac{1}{2} \right)\); \(\left( 3...

Orthocenter of the triangle formed by joining the points(2,12)\left( 2,\frac{1}{2} \right); (3,13)\left( 3,\frac{1}{3} \right)and(4,14)\left( 4,\frac{1}{4} \right); is-

A

(124,24)\left( \frac{1}{24},24 \right)

B

(124,24)\left( - \frac{1}{24},24 \right)

C

(124,24)\left( - \frac{1}{24},–24 \right)

D

(24,124)\left( 24,\frac{1}{24} \right)

Answer

(124,24)\left( - \frac{1}{24},–24 \right)

Explanation

Solution

Coordinates of the vertices are of the form (i,1i)\left( i,\frac{1}{i} \right),

I = 1, 2, 3, 4.

These coordinates satisfy the equation of rectangular hyperbola xy = 1. The orthocenter of the triangle formed by three such coordinates(a,1a)\left( a,\frac{1}{a} \right); (b,1b)\left( b,\frac{1}{b} \right) and (c,1c)\left( c,\frac{1}{c} \right)also lies on the hyperbola and given by (1abc,abc)\left( - \frac{1}{abc},–abc \right). That is (12×3×4,2×3×4)\left( - \frac{1}{2 \times 3 \times 4},–2 \times 3 \times 4 \right) =(124,24)\left( - \frac{1}{24},–24 \right).