Solveeit Logo

Question

Question: $\operatorname{Tan}^{-1} \frac{c_{1}x - y}{c_{1}y + x} + \operatorname{Tan}^{-1} \frac{c_{2} - c_{1}...

Tan1c1xyc1y+x+Tan1c2c11+c2c1+Tan1c3c21+c3c2+...Tan11cn=\operatorname{Tan}^{-1} \frac{c_{1}x - y}{c_{1}y + x} + \operatorname{Tan}^{-1} \frac{c_{2} - c_{1}}{1+c_{2}c_{1}} + \operatorname{Tan}^{-1} \frac{c_{3} - c_{2}}{1+c_{3}c_{2}} + ... \operatorname{Tan}^{-1} \frac{1}{c_{n}} =

A

Tan1(2x/y)\operatorname{Tan}^{-1}(2x/y)

B

Tan1(xy)\operatorname{Tan}^{-1}(xy)

C

Tan1(x/y)\operatorname{Tan}^{-1}(x/y)

D

none of these

Answer

Tan1(x/y)\operatorname{Tan}^{-1}(x/y)

Explanation

Solution

The first term can be written as Tan1c1y/x1+c1(y/x)=Tan1c1Tan1(y/x)\operatorname{Tan}^{-1} \frac{c_{1} - y/x}{1 + c_{1}(y/x)} = \operatorname{Tan}^{-1} c_1 - \operatorname{Tan}^{-1} (y/x). The subsequent terms are of the form Tan1ckck11+ckck1=Tan1ckTan1ck1\operatorname{Tan}^{-1} \frac{c_{k} - c_{k-1}}{1+c_{k}c_{k-1}} = \operatorname{Tan}^{-1} c_k - \operatorname{Tan}^{-1} c_{k-1}. The series becomes a telescoping sum: (Tan1c1Tan1(y/x))+(Tan1c2Tan1c1)++(Tan1cnTan1cn1)+Tan11cn(\operatorname{Tan}^{-1} c_1 - \operatorname{Tan}^{-1} (y/x)) + (\operatorname{Tan}^{-1} c_2 - \operatorname{Tan}^{-1} c_1) + \dots + (\operatorname{Tan}^{-1} c_n - \operatorname{Tan}^{-1} c_{n-1}) + \operatorname{Tan}^{-1} \frac{1}{c_n} =Tan1cnTan1(y/x)+Tan11cn= \operatorname{Tan}^{-1} c_n - \operatorname{Tan}^{-1} (y/x) + \operatorname{Tan}^{-1} \frac{1}{c_n}. Assuming cn>0c_n > 0, we use Tan1θ+Tan1(1/θ)=π2\operatorname{Tan}^{-1} \theta + \operatorname{Tan}^{-1} (1/\theta) = \frac{\pi}{2}. So, Tan1cn+Tan11cn=π2\operatorname{Tan}^{-1} c_n + \operatorname{Tan}^{-1} \frac{1}{c_n} = \frac{\pi}{2}. The sum is π2Tan1(y/x)\frac{\pi}{2} - \operatorname{Tan}^{-1} (y/x). Using π2=Tan1(x/y)+Tan1(y/x)\frac{\pi}{2} = \operatorname{Tan}^{-1} (x/y) + \operatorname{Tan}^{-1} (y/x) (for x/y>0x/y > 0), the sum is (Tan1(x/y)+Tan1(y/x))Tan1(y/x)=Tan1(x/y)(\operatorname{Tan}^{-1} (x/y) + \operatorname{Tan}^{-1} (y/x)) - \operatorname{Tan}^{-1} (y/x) = \operatorname{Tan}^{-1} (x/y).