Question
Question: $\operatorname{Tan}^{-1} \frac{c_{1}x - y}{c_{1}y + x} + \operatorname{Tan}^{-1} \frac{c_{2} - c_{1}...
Tan−1c1y+xc1x−y+Tan−11+c2c1c2−c1+Tan−11+c3c2c3−c2+...Tan−1cn1=

A
Tan−1(2x/y)
B
Tan−1(xy)
C
Tan−1(x/y)
D
none of these
Answer
Tan−1(x/y)
Explanation
Solution
The first term can be written as Tan−11+c1(y/x)c1−y/x=Tan−1c1−Tan−1(y/x). The subsequent terms are of the form Tan−11+ckck−1ck−ck−1=Tan−1ck−Tan−1ck−1. The series becomes a telescoping sum: (Tan−1c1−Tan−1(y/x))+(Tan−1c2−Tan−1c1)+⋯+(Tan−1cn−Tan−1cn−1)+Tan−1cn1 =Tan−1cn−Tan−1(y/x)+Tan−1cn1. Assuming cn>0, we use Tan−1θ+Tan−1(1/θ)=2π. So, Tan−1cn+Tan−1cn1=2π. The sum is 2π−Tan−1(y/x). Using 2π=Tan−1(x/y)+Tan−1(y/x) (for x/y>0), the sum is (Tan−1(x/y)+Tan−1(y/x))−Tan−1(y/x)=Tan−1(x/y).