Solveeit Logo

Question

Question: $\operatorname{Limit}_{x \rightarrow \pi / 2} \frac{\left(1-\tan \frac{x}{2}\right)(1-\sin x)}{\left...

Limitxπ/2(1tanx2)(1sinx)(1+tanx2)(π2x)3\operatorname{Limit}_{x \rightarrow \pi / 2} \frac{\left(1-\tan \frac{x}{2}\right)(1-\sin x)}{\left(1+\tan \frac{x}{2}\right)(\pi-2 x)^{3}} is

A

1/16

B

-1/16

C

1/32

D

-1/32

Answer

1/32

Explanation

Solution

To evaluate the limit Limitxπ/2(1tanx2)(1sinx)(1+tanx2)(π2x)3\operatorname{Limit}_{x \rightarrow \pi / 2} \frac{\left(1-\tan \frac{x}{2}\right)(1-\sin x)}{\left(1+\tan \frac{x}{2}\right)(\pi-2 x)^{3}}, we observe that as xπ/2x \rightarrow \pi/2, the expression takes the indeterminate form 0/00/0.

We use the substitution method. Let x=π2hx = \frac{\pi}{2} - h.
As xπ2x \rightarrow \frac{\pi}{2}, h0h \rightarrow 0.

Now, substitute x=π2hx = \frac{\pi}{2} - h into the expression:

  1. Numerator terms:

    • 1tanx2=1tan(π4h2)1 - \tan \frac{x}{2} = 1 - \tan \left(\frac{\pi}{4} - \frac{h}{2}\right)
      Using the tangent subtraction formula tan(AB)=tanAtanB1+tanAtanB\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}:
      tan(π4h2)=tan(π/4)tan(h/2)1+tan(π/4)tan(h/2)=1tan(h/2)1+tan(h/2)\tan \left(\frac{\pi}{4} - \frac{h}{2}\right) = \frac{\tan(\pi/4) - \tan(h/2)}{1 + \tan(\pi/4)\tan(h/2)} = \frac{1 - \tan(h/2)}{1 + \tan(h/2)}
      So, 1tanx2=11tan(h/2)1+tan(h/2)=(1+tan(h/2))(1tan(h/2))1+tan(h/2)=2tan(h/2)1+tan(h/2)1 - \tan \frac{x}{2} = 1 - \frac{1 - \tan(h/2)}{1 + \tan(h/2)} = \frac{(1 + \tan(h/2)) - (1 - \tan(h/2))}{1 + \tan(h/2)} = \frac{2\tan(h/2)}{1 + \tan(h/2)}.

    • 1sinx=1sin(π2h)1 - \sin x = 1 - \sin \left(\frac{\pi}{2} - h\right)
      Using the identity sin(π/2θ)=cosθ\sin(\pi/2 - \theta) = \cos \theta:
      1sinx=1cosh1 - \sin x = 1 - \cos h.

  2. Denominator terms:

    • 1+tanx2=1+tan(π4h2)1 + \tan \frac{x}{2} = 1 + \tan \left(\frac{\pi}{4} - \frac{h}{2}\right)
      1+tanx2=1+1tan(h/2)1+tan(h/2)=(1+tan(h/2))+(1tan(h/2))1+tan(h/2)=21+tan(h/2)1 + \tan \frac{x}{2} = 1 + \frac{1 - \tan(h/2)}{1 + \tan(h/2)} = \frac{(1 + \tan(h/2)) + (1 - \tan(h/2))}{1 + \tan(h/2)} = \frac{2}{1 + \tan(h/2)}.

    • π2x=π2(π2h)=ππ+2h=2h\pi - 2x = \pi - 2\left(\frac{\pi}{2} - h\right) = \pi - \pi + 2h = 2h.
      Therefore, (π2x)3=(2h)3=8h3(\pi - 2x)^3 = (2h)^3 = 8h^3.

Now substitute these back into the limit expression: Limith0(2tan(h/2)1+tan(h/2))(1cosh)(21+tan(h/2))(8h3)\operatorname{Limit}_{h \rightarrow 0} \frac{\left(\frac{2\tan(h/2)}{1 + \tan(h/2)}\right)(1-\cos h)}{\left(\frac{2}{1 + \tan(h/2)}\right)(8h^3)} Cancel out the common term 21+tan(h/2)\frac{2}{1 + \tan(h/2)} from the numerator and denominator: Limith0tan(h/2)(1cosh)8h3\operatorname{Limit}_{h \rightarrow 0} \frac{\tan(h/2)(1-\cos h)}{8h^3} We can rewrite this expression to use standard limits: Limith0tan(h/2)h1coshh218\operatorname{Limit}_{h \rightarrow 0} \frac{\tan(h/2)}{h} \cdot \frac{1-\cos h}{h^2} \cdot \frac{1}{8} We know the following standard limits:

  • Limitθ0tanθθ=1\operatorname{Limit}_{\theta \rightarrow 0} \frac{\tan \theta}{\theta} = 1
  • Limitθ01cosθθ2=12\operatorname{Limit}_{\theta \rightarrow 0} \frac{1 - \cos \theta}{\theta^2} = \frac{1}{2}

Apply these to our expression:

  • For tan(h/2)h\frac{\tan(h/2)}{h}: Multiply and divide by 2 to match the form tanθθ\frac{\tan \theta}{\theta}:
    Limith0tan(h/2)h=Limith0tan(h/2)h/212=112=12\operatorname{Limit}_{h \rightarrow 0} \frac{\tan(h/2)}{h} = \operatorname{Limit}_{h \rightarrow 0} \frac{\tan(h/2)}{h/2} \cdot \frac{1}{2} = 1 \cdot \frac{1}{2} = \frac{1}{2}.

  • For 1coshh2\frac{1-\cos h}{h^2}: This is a direct application of the standard limit:
    Limith01coshh2=12\operatorname{Limit}_{h \rightarrow 0} \frac{1-\cos h}{h^2} = \frac{1}{2}.

Now, substitute these limit values back into the expression: (12)(12)(18)=1418=132\left(\frac{1}{2}\right) \cdot \left(\frac{1}{2}\right) \cdot \left(\frac{1}{8}\right) = \frac{1}{4} \cdot \frac{1}{8} = \frac{1}{32}

The value of the limit is 132\frac{1}{32}.