Question
Question: $\operatorname{Limit}_{x \rightarrow \infty}\left(\frac{x+2}{x-2}\right)^{x+1}=$...
Limitx→∞(x−2x+2)x+1=

A
e4
B
e−4
C
sin1
D
e2
E
None of these
Answer
e4
Explanation
Solution
The given limit is of the indeterminate form 1∞. To evaluate, we use the formula:
Limitx→a[f(x)]g(x)=eLimitx→ag(x)[f(x)−1]
Here, f(x)=x−2x+2 and g(x)=x+1.
-
Calculate the exponent:
Limitx→∞(x+1)(x−2x+2−1)
-
Simplify the expression:
(x+1)(x−2x+2−(x−2))=(x+1)(x−24)=x−24x+4
-
Evaluate the limit:
Limitx→∞x−24x+4=Limitx→∞1−2/x4+4/x=1−04+0=4
Therefore, the original limit is e4.