Solveeit Logo

Question

Chemistry Question on Redox reactions

Only 2mL2 \, \text{mL} of KMnO4\text{KMnO}_4 solution of unknown molarity is required to reach the end point of a titration of 20mL20 \, \text{mL} of oxalic acid (2M2 \, \text{M}) in acidic medium. The molarity of KMnO4\text{KMnO}_4 solution should be ______ M\text{M}.

Answer

In an acidic medium, the reaction between potassium permanganate (KMnO4\text{KMnO}_4) and oxalic acid (H2C2O4\text{H}_2\text{C}_2\text{O}_4) can be represented as:

2KMnO4+5H2C2O4+6H+2Mn2++10CO2+8H2O2 \text{KMnO}_4 + 5 \text{H}_2\text{C}_2\text{O}_4 + 6 \text{H}^+ \rightarrow 2 \text{Mn}^{2+} + 10 \text{CO}_2 + 8 \text{H}_2\text{O}

Using the Concept of Equivalents:

According to the principle of equivalents:

equivalents of KMnO4=equivalents of H2C2O4\text{equivalents of KMnO}_4 = \text{equivalents of H}_2\text{C}_2\text{O}_4

Calculate Equivalents for Each Solution:

For oxalic acid (H2C2O4\text{H}_2\text{C}_2\text{O}_4):

Molarity×Volume×n-factor=2×20×2=80meq\text{Molarity} \times \text{Volume} \times \text{n-factor} = 2 \times 20 \times 2 = 80 \, \text{meq}

where n-factor=2\text{n-factor} = 2 for oxalic acid.

For KMnO4\text{KMnO}_4:

M×2×5=10MmeqM \times 2 \times 5 = 10M \, \text{meq}

where n-factor=5\text{n-factor} = 5 for KMnO4\text{KMnO}_4.

Equating Equivalents:

10M=8010M = 80

Solving for MM:

M=8010=8MM = \frac{80}{10} = 8 \, \text{M}

Conclusion:

The molarity of the KMnO4\text{KMnO}_4 solution is 8M8 \, \text{M}.