Solveeit Logo

Question

Mathematics Question on Straight lines

One vertex of an equilateral triangle is (2,3)(2,3) and the equation of line opposite to the vertex is x+y=2x + y = 2, then the equation of remaining two sides are

A

y3=(2±3)(x2)y-3=\left(2\pm\sqrt{3}\right)\left(x-2\right)

B

y+3=(2±3)(x+2)y+3=\left(2\pm\sqrt{3}\right)\left(x+2\right)

C

y+3=((3±2)(x+2)y+3=\left((3\pm\sqrt{2}\right)\left(x+2\right)

D

y3=(3±2)(x2)y-3=\left(3\pm\sqrt{2}\right)\left(x-2\right)

Answer

y3=(2±3)(x2)y-3=\left(2\pm\sqrt{3}\right)\left(x-2\right)

Explanation

Solution

Since the two sides make an angle of 60?60^{?} each with side x+y=2x + y = 2. Therefore equations of these sides will be y3=1±tan?60?1(1)tan60?(x2)=1±31±3(x2)y-3=\frac{-1\pm tan^{?}\,60^{?}}{1\mp\left(-1\right)tan\,60^{?}}\left(x-2\right)=\frac{-1\pm\sqrt{3}}{1\pm\sqrt{3}}\left(x-2\right) y3=(2±3)(x2)\Rightarrow y-3=\left(2\pm\sqrt{3}\right)\left(x-2\right)