Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

One possible condition for the three points (a,5),(b,a)(a, 5), (b, a) and (a2,b2)(a^2, - b^2) to be collinear is

A

a - b = 2

B

a + b = 2

C

a = 1 + b

D

a = 1 - b

Answer

a = 1 + b

Explanation

Solution

Since, points (a,b),(b,a)(a, b), (b, a) and (a2,b2)(a^2, - b^ 2) are collinear.
ab;1 ba;1 a2b21=0\therefore \begin{vmatrix}a&b;&1\\\ b&a;&1\\\ a^{2}&-b^{2}&1\end{vmatrix} = 0
Applying, R2R2R1R_{2} \to R_{2} - R_{1} and R3R3R1R_{3} \to R_{3} -R_{1} ab;1 baab;0 a2ab2b0=0\Rightarrow\begin{vmatrix}a&b;&1\\\ b-a&a-b;&0\\\ a^{2}-a&-b^{2}-b&0\end{vmatrix} = 0
baab; a2ab2b=0\Rightarrow\begin{vmatrix}b-a&a-b;\\\ a^{2}-a&-b^{2}-b\end{vmatrix} = 0
(ab)11 a2ab2b=0\Rightarrow \left(a-b\right)\begin{vmatrix}-1&1\\\ a^{2}-a&-b^{2}-b\end{vmatrix} = 0
(ab)(b2+b+a2+a)=0\Rightarrow \left(a-b\right)\left(b^{2} +b+a^{2}+a\right) = 0
(ab)(a+b)(b+1a)=0\Rightarrow \left(a-b\right)\left(a+b\right)\left(b+1-a\right) =0
\Rightarrow Either ab=0a - b = 0 or (a+b)=0\left(a + b\right) = 0
or (b+1a)=0\left(b + 1 - a\right) = 0