Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

One plano-convex and one plano-concave lens of same radius of curvature R'R' but of different materials are joined side by side as shown in the figure. If the refractive index of the material of 11 is μ1\mu_1 and that of 22 is μ2\mu_2, then the focal length of the combination is :

A

R2(μ1μ2)\frac{R}{2-\left(\mu_{1} -\mu_{2}\right)}

B

2Rμ1μ2\frac{ 2 R}{\mu_{1} -\mu_{2} }

C

R2(μ1μ2)\frac{R}{2\left(\mu_{1} -\mu_{2}\right)}

D

Rμ1μ2\frac{ R}{\mu_{1} -\mu_{2} }

Answer

Rμ1μ2\frac{ R}{\mu_{1} -\mu_{2} }

Explanation

Solution

For 1st lens 1f1=(μ111)(11R)=μ11R\frac{1}{f_{1}} = \left(\frac{\mu_{1} -1}{ 1}\right) \left(\frac{1}{\infty} - \frac{1}{-R}\right) =\frac{\mu_{1} -1}{ R} for 2nd lens 1f2=(μ211)(1R0)=μ21R\frac{1}{f_{2}} = \left(\frac{\mu_{2} -1}{1}\right) \left(\frac{1}{-R} -0\right) =- \frac{\mu_{2} -1}{R} 1feq=1f1+1f2\frac{1}{f_{eq}} = \frac{1}{f_{1}} + \frac{1}{f_{2}} 1feq=Rμ11+R(μ21)1feq=Rμ1μ2\frac{1}{f_{eq}} = \frac{R}{\mu_{1}-1} + \frac{R}{-\left(\mu_{2} -1\right)} \Rightarrow \frac{1}{f_{eq}} = \frac{R}{\mu_{1} -\mu_{2}} Hence feq=μ1μ2Rf_{eq} = \frac{\mu_{1} -\mu_{2}}{R}