Solveeit Logo

Question

Question: A wall OP is inclined to the horizontal ground at an angle $\alpha$. Two particles are projected fro...

A wall OP is inclined to the horizontal ground at an angle α\alpha. Two particles are projected from points A and B on the ground with same speed (u) in directions making an angle θ\theta to the horizontal (see figure). Distance between points A and B is x0x_0 = 24 m. Both particles hit the wall elastically and fall back on the ground. Time of flight (time required to hit the wall and then fall back on to the ground) for particles projected from A and B are 4 s and 2 s respectively. Both the particles strike the wall perpendicularly and at the same location. [In elastic collision, the velocity component of the particle that is perpendicular to the wall gets reversed without change in magnitude [g = 10 m/s²]

A

Maximum height attained by the particle projected from A is 11.25 m

B

The inclination of the wall to the horizontal (α\alpha) is related as tanα=(85)tan \alpha = (\frac{8}{5})

C

Maximum height attained by the particle projected from A is 22.5 m

D

The inclination of the wall to the horizontal (α\alpha) is related as tanα=(58)tan \alpha = (\frac{5}{8})

Answer

A and B

Explanation

Solution

Let tAt_A' and tBt_B' be the times taken by particles A and B, respectively, to hit the wall.
Let (xc,yc)(x_c, y_c) be the common collision point.

  1. Horizontal Motion to Wall:

    xc=xA+(ucosθ)tAx_c = x_A + (u \cos \theta) t_A'
    xc=xB(ucosθ)tBx_c = x_B - (u \cos \theta) t_B'
    Equating xcx_c: (ucosθ)(tA+tB)=xBxA=24(u \cos \theta) (t_A' + t_B') = x_B - x_A = 24 m. (Eq 1)

  2. Vertical Motion to Wall:

    yc=(usinθ)tA12g(tA)2y_c = (u \sin \theta) t_A' - \frac{1}{2} g (t_A')^2
    yc=(usinθ)tB12g(tB)2y_c = (u \sin \theta) t_B' - \frac{1}{2} g (t_B')^2
    Equating ycy_c: usinθ(tAtB)=12g((tA)2(tB)2)    usinθ=12g(tA+tB)u \sin \theta (t_A' - t_B') = \frac{1}{2} g ((t_A')^2 - (t_B')^2) \implies u \sin \theta = \frac{1}{2} g (t_A' + t_B'). (Eq 2)

  3. Perpendicular Collision Condition:

    The velocity vector v=(vx,vy)\vec{v}=(v_x, v_y) must be perpendicular to the wall. The wall has slope tanα\tan \alpha. So, vxcosα+vysinα=0v_x \cos \alpha + v_y \sin \alpha = 0.
    For particle A: (ucosθ)cosα+(usinθgtA)sinα=0    ucos(θα)=gtAsinα(u \cos \theta) \cos \alpha + (u \sin \theta - g t_A') \sin \alpha = 0 \implies u \cos(\theta - \alpha) = g t_A' \sin \alpha. (Eq 3A)
    For particle B: (ucosθ)cosα+(usinθgtB)sinα=0    ucos(θ+α)=gtBsinα(-u \cos \theta) \cos \alpha + (u \sin \theta - g t_B') \sin \alpha = 0 \implies -u \cos(\theta + \alpha) = g t_B' \sin \alpha. (Eq 3B)

  4. Velocity after Collision:

    The component of velocity perpendicular to the wall reverses. The component parallel to the wall is zero (due to perpendicular impact) and remains zero.
    The velocity component perpendicular to the wall before collision for A is vperp,A=vAn=(ucosθ)sinα(usinθgtA)cosα=ucosθsinαv_{perp,A} = \vec{v}_A \cdot \vec{n} = (u \cos \theta)\sin \alpha - (u \sin \theta - g t_A')\cos \alpha = \frac{u \cos \theta}{\sin \alpha}.
    After collision, vperp,A=ucosθsinαv'_{perp,A} = -\frac{u \cos \theta}{\sin \alpha}.
    Similarly for B, vperp,B=ucosθsinαv'_{perp,B} = \frac{u \cos \theta}{\sin \alpha}.
    The velocity vector components in the horizontal-vertical frame after collision are:
    For A: vx,A=vperp,Asinα=ucosθv_{x,A}' = v'_{perp,A} \sin \alpha = -u \cos \theta.
    vy,A=vperp,Acosα=ucosθcotαv_{y,A}' = -v'_{perp,A} \cos \alpha = u \cos \theta \cot \alpha.
    For B: vx,B=vperp,Bsinα=ucosθv_{x,B}' = v'_{perp,B} \sin \alpha = u \cos \theta.
    vy,B=vperp,Bcosα=ucosθcotαv_{y,B}' = -v'_{perp,B} \cos \alpha = -u \cos \theta \cot \alpha.
    Let vy,0=ucosθcotαv_{y,0}' = u \cos \theta \cot \alpha. So vy,A=vy,0v_{y,A}' = v_{y,0}' and vy,B=vy,0v_{y,B}' = -v_{y,0}'.

  5. Time of Flight after Collision:

    Let tAt_A'' and tBt_B'' be the times to return to the ground from the collision point (xc,yc)(x_c, y_c).
    The vertical motion is 0=yc+vyt12g(t)20 = y_c + v_y' t'' - \frac{1}{2} g (t'')^2.
    The positive root is t=vy+(vy)2+2gycgt'' = \frac{v_y' + \sqrt{(v_y')^2 + 2 g y_c}}{g}.
    For A: tA=vy,0+(vy,0)2+2gycgt_A'' = \frac{v_{y,0}' + \sqrt{(v_{y,0}')^2 + 2 g y_c}}{g}.
    For B: tB=vy,0+(vy,0)2+2gycgt_B'' = \frac{-v_{y,0}' + \sqrt{(v_{y,0}')^2 + 2 g y_c}}{g}.
    Subtracting these: tAtB=2vy,0g=2ucosθcotαgt_A'' - t_B'' = \frac{2 v_{y,0}'}{g} = \frac{2 u \cos \theta \cot \alpha}{g}. (Eq 4)

  6. Using Total Time of Flight:

    Given TA=tA+tA=4T_A = t_A' + t_A'' = 4 s and TB=tB+tB=2T_B = t_B' + t_B'' = 2 s.
    Subtracting these: (tAtB)+(tAtB)=42=2(t_A' - t_B') + (t_A'' - t_B'') = 4 - 2 = 2. (Eq 5)

  7. Combining Equations:

    From (Eq 3A) and (Eq 3B):
    tA+tB=ugsinα(cos(θα)cos(θ+α))=ugsinα(2sinθsinα)=2usinθgt_A' + t_B' = \frac{u}{g \sin \alpha} (\cos(\theta - \alpha) - \cos(\theta + \alpha)) = \frac{u}{g \sin \alpha} (2 \sin \theta \sin \alpha) = \frac{2u \sin \theta}{g}.
    tAtB=ugsinα(cos(θα)+cos(θ+α))=ugsinα(2cosθcosα)=2ucosθcotαgt_A' - t_B' = \frac{u}{g \sin \alpha} (\cos(\theta - \alpha) + \cos(\theta + \alpha)) = \frac{u}{g \sin \alpha} (2 \cos \theta \cos \alpha) = \frac{2u \cos \theta \cot \alpha}{g}.
    Substitute tAtBt_A' - t_B' from this into (Eq 5):
    2ucosθcotαg+2ucosθcotαg=2\frac{2u \cos \theta \cot \alpha}{g} + \frac{2u \cos \theta \cot \alpha}{g} = 2.
    2(2ucosθcotαg)=2    2ucosθcotαg=12 \left( \frac{2u \cos \theta \cot \alpha}{g} \right) = 2 \implies \frac{2u \cos \theta \cot \alpha}{g} = 1. (Eq 6)

  8. Solving for tanα\tan \alpha and HmaxH_{max}:

    From (Eq 1): ucosθ(tA+tB)=24u \cos \theta (t_A' + t_B') = 24.
    From (Eq 2): usinθ=g2(tA+tB)u \sin \theta = \frac{g}{2} (t_A' + t_B').
    Let tsum=tA+tBt_{sum} = t_A' + t_B'.
    ucosθ=24/tsumu \cos \theta = 24/t_{sum}.
    usinθ=gtsum/2u \sin \theta = g t_{sum}/2.
    Substitute ucosθu \cos \theta into (Eq 6): 2(24/tsum)cotαg=1    48cotαgtsum=1    tsum=48cotαg\frac{2 (24/t_{sum}) \cot \alpha}{g} = 1 \implies \frac{48 \cot \alpha}{g t_{sum}} = 1 \implies t_{sum} = \frac{48 \cot \alpha}{g}.
    Equate the two expressions for tsumt_{sum}: 48cotαg=2usinθg    48cotα=2usinθ\frac{48 \cot \alpha}{g} = \frac{2u \sin \theta}{g} \implies 48 \cot \alpha = 2u \sin \theta.
    From usinθ=gtsum/2u \sin \theta = g t_{sum}/2:
    tsum=48cotαg=4810tanαt_{sum} = \frac{48 \cot \alpha}{g} = \frac{48}{10 \tan \alpha}.
    Now, from yc=usinθtA12g(tA)2y_c = u \sin \theta t_A' - \frac{1}{2} g (t_A')^2.
    Also, from tAtB=1t_A' - t_B' = 1 (from Eq 5 and Eq 4).
    And tA+tB=tsumt_A' + t_B' = t_{sum}.
    So tA=(tsum+1)/2t_A' = (t_{sum} + 1)/2 and tB=(tsum1)/2t_B' = (t_{sum} - 1)/2.
    Substitute tA=12(48gtanα+1)=24gtanα+0.5t_A' = \frac{1}{2} (\frac{48}{g \tan \alpha} + 1) = \frac{24}{g \tan \alpha} + 0.5.
    usinθ=g2tsum=g248gtanα=24tanαu \sin \theta = \frac{g}{2} t_{sum} = \frac{g}{2} \frac{48}{g \tan \alpha} = \frac{24}{\tan \alpha}.
    Substitute these into yc=usinθtA12g(tA)2y_c = u \sin \theta t_A' - \frac{1}{2} g (t_A')^2:
    yc=24tanα(24gtanα+0.5)12g(24gtanα+0.5)2y_c = \frac{24}{\tan \alpha} \left( \frac{24}{g \tan \alpha} + 0.5 \right) - \frac{1}{2} g \left( \frac{24}{g \tan \alpha} + 0.5 \right)^2.
    yc=576gtan2α+12tanαg2(576g2tan2α+24gtanα+0.25)y_c = \frac{576}{g \tan^2 \alpha} + \frac{12}{\tan \alpha} - \frac{g}{2} \left( \frac{576}{g^2 \tan^2 \alpha} + \frac{24}{g \tan \alpha} + 0.25 \right).
    yc=576gtan2α+12tanα288gtan2α12tanαg8y_c = \frac{576}{g \tan^2 \alpha} + \frac{12}{\tan \alpha} - \frac{288}{g \tan^2 \alpha} - \frac{12}{\tan \alpha} - \frac{g}{8}.
    yc=288gtan2αg8y_c = \frac{288}{g \tan^2 \alpha} - \frac{g}{8}.
    Now use tA=vy,0+(vy,0)2+2gycgt_A'' = \frac{v_{y,0}' + \sqrt{(v_{y,0}')^2 + 2 g y_c}}{g}.
    And tA=4tA=4(24gtanα+0.5)=3.524gtanαt_A'' = 4 - t_A' = 4 - (\frac{24}{g \tan \alpha} + 0.5) = 3.5 - \frac{24}{g \tan \alpha}.
    Substitute vy,0=g/2v_{y,0}' = g/2 (from Eq 6) and ycy_c:
    3.524gtanα=g/2+(g/2)2+2g(288gtan2αg8)g3.5 - \frac{24}{g \tan \alpha} = \frac{g/2 + \sqrt{(g/2)^2 + 2g(\frac{288}{g \tan^2 \alpha} - \frac{g}{8})}}{g}.
    3.524gtanα=12+g2/4+576tan2αg2/4g3.5 - \frac{24}{g \tan \alpha} = \frac{1}{2} + \frac{\sqrt{g^2/4 + \frac{576}{\tan^2 \alpha} - g^2/4}}{g}.
    3.524gtanα=12+576/tan2αg3.5 - \frac{24}{g \tan \alpha} = \frac{1}{2} + \frac{\sqrt{576/\tan^2 \alpha}}{g}.
    3.524gtanα=12+24gtanα3.5 - \frac{24}{g \tan \alpha} = \frac{1}{2} + \frac{24}{g \tan \alpha}.
    3=48gtanα3 = \frac{48}{g \tan \alpha}.
    tanα=483g=16g=1610=85\tan \alpha = \frac{48}{3g} = \frac{16}{g} = \frac{16}{10} = \frac{8}{5}.
    So, option (B) is correct.

  9. Calculate Maximum Height:

    Maximum height Hmax=(usinθ)22gH_{max} = \frac{(u \sin \theta)^2}{2g}.
    We have usinθ=24tanα=248/5=24×58=3×5=15u \sin \theta = \frac{24}{\tan \alpha} = \frac{24}{8/5} = 24 \times \frac{5}{8} = 3 \times 5 = 15 m/s.
    Hmax=1522×10=22520=11.25H_{max} = \frac{15^2}{2 \times 10} = \frac{225}{20} = 11.25 m.
    So, option (A) is correct.

The final answer is AB\boxed{AB}