Question
Question: A wall OP is inclined to the horizontal ground at an angle $\alpha$. Two particles are projected fro...
A wall OP is inclined to the horizontal ground at an angle α. Two particles are projected from points A and B on the ground with same speed (u) in directions making an angle θ to the horizontal (see figure). Distance between points A and B is x0 = 24 m. Both particles hit the wall elastically and fall back on the ground. Time of flight (time required to hit the wall and then fall back on to the ground) for particles projected from A and B are 4 s and 2 s respectively. Both the particles strike the wall perpendicularly and at the same location. [In elastic collision, the velocity component of the particle that is perpendicular to the wall gets reversed without change in magnitude [g = 10 m/s²]

Maximum height attained by the particle projected from A is 11.25 m
The inclination of the wall to the horizontal (α) is related as tanα=(58)
Maximum height attained by the particle projected from A is 22.5 m
The inclination of the wall to the horizontal (α) is related as tanα=(85)
A and B
Solution
Let tA′ and tB′ be the times taken by particles A and B, respectively, to hit the wall.
Let (xc,yc) be the common collision point.
-
Horizontal Motion to Wall:
xc=xA+(ucosθ)tA′
xc=xB−(ucosθ)tB′
Equating xc: (ucosθ)(tA′+tB′)=xB−xA=24 m. (Eq 1) -
Vertical Motion to Wall:
yc=(usinθ)tA′−21g(tA′)2
yc=(usinθ)tB′−21g(tB′)2
Equating yc: usinθ(tA′−tB′)=21g((tA′)2−(tB′)2)⟹usinθ=21g(tA′+tB′). (Eq 2) -
Perpendicular Collision Condition:
The velocity vector v=(vx,vy) must be perpendicular to the wall. The wall has slope tanα. So, vxcosα+vysinα=0.
For particle A: (ucosθ)cosα+(usinθ−gtA′)sinα=0⟹ucos(θ−α)=gtA′sinα. (Eq 3A)
For particle B: (−ucosθ)cosα+(usinθ−gtB′)sinα=0⟹−ucos(θ+α)=gtB′sinα. (Eq 3B) -
Velocity after Collision:
The component of velocity perpendicular to the wall reverses. The component parallel to the wall is zero (due to perpendicular impact) and remains zero.
The velocity component perpendicular to the wall before collision for A is vperp,A=vA⋅n=(ucosθ)sinα−(usinθ−gtA′)cosα=sinαucosθ.
After collision, vperp,A′=−sinαucosθ.
Similarly for B, vperp,B′=sinαucosθ.
The velocity vector components in the horizontal-vertical frame after collision are:
For A: vx,A′=vperp,A′sinα=−ucosθ.
vy,A′=−vperp,A′cosα=ucosθcotα.
For B: vx,B′=vperp,B′sinα=ucosθ.
vy,B′=−vperp,B′cosα=−ucosθcotα.
Let vy,0′=ucosθcotα. So vy,A′=vy,0′ and vy,B′=−vy,0′. -
Time of Flight after Collision:
Let tA′′ and tB′′ be the times to return to the ground from the collision point (xc,yc).
The vertical motion is 0=yc+vy′t′′−21g(t′′)2.
The positive root is t′′=gvy′+(vy′)2+2gyc.
For A: tA′′=gvy,0′+(vy,0′)2+2gyc.
For B: tB′′=g−vy,0′+(vy,0′)2+2gyc.
Subtracting these: tA′′−tB′′=g2vy,0′=g2ucosθcotα. (Eq 4) -
Using Total Time of Flight:
Given TA=tA′+tA′′=4 s and TB=tB′+tB′′=2 s.
Subtracting these: (tA′−tB′)+(tA′′−tB′′)=4−2=2. (Eq 5) -
Combining Equations:
From (Eq 3A) and (Eq 3B):
tA′+tB′=gsinαu(cos(θ−α)−cos(θ+α))=gsinαu(2sinθsinα)=g2usinθ.
tA′−tB′=gsinαu(cos(θ−α)+cos(θ+α))=gsinαu(2cosθcosα)=g2ucosθcotα.
Substitute tA′−tB′ from this into (Eq 5):
g2ucosθcotα+g2ucosθcotα=2.
2(g2ucosθcotα)=2⟹g2ucosθcotα=1. (Eq 6) -
Solving for tanα and Hmax:
From (Eq 1): ucosθ(tA′+tB′)=24.
From (Eq 2): usinθ=2g(tA′+tB′).
Let tsum=tA′+tB′.
ucosθ=24/tsum.
usinθ=gtsum/2.
Substitute ucosθ into (Eq 6): g2(24/tsum)cotα=1⟹gtsum48cotα=1⟹tsum=g48cotα.
Equate the two expressions for tsum: g48cotα=g2usinθ⟹48cotα=2usinθ.
From usinθ=gtsum/2:
tsum=g48cotα=10tanα48.
Now, from yc=usinθtA′−21g(tA′)2.
Also, from tA′−tB′=1 (from Eq 5 and Eq 4).
And tA′+tB′=tsum.
So tA′=(tsum+1)/2 and tB′=(tsum−1)/2.
Substitute tA′=21(gtanα48+1)=gtanα24+0.5.
usinθ=2gtsum=2ggtanα48=tanα24.
Substitute these into yc=usinθtA′−21g(tA′)2:
yc=tanα24(gtanα24+0.5)−21g(gtanα24+0.5)2.
yc=gtan2α576+tanα12−2g(g2tan2α576+gtanα24+0.25).
yc=gtan2α576+tanα12−gtan2α288−tanα12−8g.
yc=gtan2α288−8g.
Now use tA′′=gvy,0′+(vy,0′)2+2gyc.
And tA′′=4−tA′=4−(gtanα24+0.5)=3.5−gtanα24.
Substitute vy,0′=g/2 (from Eq 6) and yc:
3.5−gtanα24=gg/2+(g/2)2+2g(gtan2α288−8g).
3.5−gtanα24=21+gg2/4+tan2α576−g2/4.
3.5−gtanα24=21+g576/tan2α.
3.5−gtanα24=21+gtanα24.
3=gtanα48.
tanα=3g48=g16=1016=58.
So, option (B) is correct. -
Calculate Maximum Height:
Maximum height Hmax=2g(usinθ)2.
We have usinθ=tanα24=8/524=24×85=3×5=15 m/s.
Hmax=2×10152=20225=11.25 m.
So, option (A) is correct.
The final answer is AB