Solveeit Logo

Question

Question: One or more than one correct: 1. If for an increasing GP, a,b,c and d are $l^{th}$, $m^{th}$, $n^{...

One or more than one correct:

  1. If for an increasing GP, a,b,c and d are lthl^{th}, mthm^{th}, nthn^{th} and pthp^{th} terms respectively and roots of equation (a2+b2+c2)x22(ab+bc+cd)x+b2+c2+d2=0(a^2+b^2+c^2)x^2-2(ab+bc+cd)x + b^2+c^2+d^2 = 0 are real, then-
  2. Least value of x2y22x2y+2x2+2xy2x+1x2y+x\frac{x^2y^2-2x^2y+2x^2+2xy-2x+1}{x^2y+x} is λ\lambda, then {where x,yR+x,y \in R^+, x2y+x0x^2y + x \neq 0}
  3. Let ab,ab,ab\frac{a}{b}, ab, a - b and a + b are first 4 terms of an A.P. in order (a,bR0)(a,b \in R_0), then-
  4. Let (an),n=1,2,3....(a_n), n = 1,2,3.... be the sequence of real numbers such that a1=2a_1 = 2 and an=(n+1n1)(a1+a2+...+an1),(n2)a_n = (\frac{n+1}{n-1})(a_1 + a_2 + ... + a_{n-1}), (n \geq 2), then- [where [.] denotes greatest integer function]
  5. The sum of infinite series 13+33.7+53.7.11+73.7.11.15+....\frac{1}{3} + \frac{3}{3.7} + \frac{5}{3.7.11} + \frac{7}{3.7.11.15} + .... is equal to
  6. If a, b, c be three unequal positive quantities in H.P., then -
  7. If 2a2,b2,2c22a^2, b^2, 2c^2 are three distinct numbers in harmonic progression then-
A

l,m,n,pl,m,n,p are in G.P

A

λ(0,1)\lambda \in (0,1)

A

common difference of A.P is 65-\frac{6}{5}

A

[a201622016]=1008[\frac{a_{2016}}{2^{2016}}] = 1008

A

12\frac{1}{2}

A

a100+c100>2b100a^{100} + c^{100} > 2b^{100}

A

4a2b2,b2,4c2b24a^2-b^2, b^2, 4c^2-b^2 are in G.P.

B

l,m,n,pl,m,n,p are in A.P

B

λ[1,3)\lambda \in [1,3)

B

common difference of A.P is 56-\frac{5}{6}

B

[a201622016]=2016[\frac{a_{2016}}{2^{2016}}] = 2016

B

16\frac{1}{6}

B

a3+c3>2b3a^3 + c^3 > 2b^3

B

4a2b2,b2,4c2b24a^2-b^2, b^2, 4c^2-b^2 are in A.P.

C

b2+c2=ac+bdb^2+c^2 = ac + bd

C

λ[3,4]\lambda \in [3,4]

C

fifth term of A.P. will be 11740-\frac{117}{40}

C

a2015a_{2015} is divisible by 220192^{2019}

C

43\frac{4}{3}

C

a5+b5<2b5a^5 + b^5 < 2b^5

C

abc,acb,bca\frac{ab}{c}, \frac{ac}{b}, \frac{bc}{a} are in A.P.

D

b2+c2=ad+bcb^2+c^2 = ad + bc

D

λ(4,7)\lambda \in (4,7)

D

ab=2740ab = \frac{27}{40}

D

If a1+a2+.......+an>1008a_1 + a_2 + ....... + a_n > 1008, then least value of n is 8.

D

83\frac{8}{3}

D

a2+c2>2b2a^2 + c^2 > 2b^2

D

abc,2acb,bca\frac{ab}{c}, \frac{2ac}{b}, \frac{bc}{a} are in A.P.

Answer
  1. (B), (C); 2. (A); 3. (A), (C), (D); 4. (A), (C), (D); 5. (A); 6. (A), (B), (D); 7. (A), (D)
Explanation

Solution

Explanation for each part:

  1. The condition for real roots implies the equality in Cauchy-Schwarz inequality, which means a,b,c,da,b,c,d are in GP. This leads to l,m,n,pl,m,n,p being in A.P. (lm=mn=npl-m=m-n=n-p). If a,b,c,da,b,c,d are in GP, then b=ar,c=ar2,d=ar3b=ar, c=ar^2, d=ar^3. Substituting these into b2+c2=ac+bdb^2+c^2=ac+bd gives a2r2+a2r4=a(ar2)+ar(ar3)=a2r2+a2r4a^2r^2+a^2r^4 = a(ar^2)+ar(ar^3) = a^2r^2+a^2r^4, which is true.

  2. The expression simplifies to y+1x2+2xxy+1y+\frac{1}{x}-2+\frac{2x}{xy+1}. Let A=y+1xA=y+\frac{1}{x}. The expression becomes A2+2AA-2+\frac{2}{A}. By AM-GM, A+2A22A+\frac{2}{A} \ge 2\sqrt{2}. Thus, the minimum value is 2220.8282\sqrt{2}-2 \approx 0.828, which is in (0,1)(0,1).

  3. Let the common difference be dd'. d=(a+b)(ab)=2bd' = (a+b)-(a-b) = 2b. Also, d=(ab)abd' = (a-b)-ab and d=aba/bd' = ab - a/b. Solving these equations simultaneously yields b=3/5b = -3/5 (since b1b \ne 1). Then d=2(3/5)=6/5d' = 2(-3/5) = -6/5. a=2b2/(b21)=9/8a = 2b^2/(b^2-1) = -9/8. ab=(9/8)(3/5)=27/40ab = (-9/8)(-3/5) = 27/40. The fifth term is T5=(a+b)+d=(9/83/5)+(6/5)=69/4048/40=117/40T_5 = (a+b)+d' = (-9/8-3/5) + (-6/5) = -69/40 - 48/40 = -117/40.

  4. From an=(n+1n1)Sn1a_n = (\frac{n+1}{n-1})S_{n-1} and an1=(nn2)Sn2a_{n-1} = (\frac{n}{n-2})S_{n-2}, using Sn1=Sn2+an1S_{n-1} = S_{n-2}+a_{n-1}, we derive the recurrence an=2(n+1)nan1a_n = \frac{2(n+1)}{n}a_{n-1} for n2n \ge 2. Solving this recurrence with a1=2a_1=2 gives an=2n1(n+1)a_n = 2^{n-1}(n+1).

    (A) a2016/22016=22015(2017)/22016=2017/2=1008.5a_{2016}/2^{2016} = 2^{2015}(2017)/2^{2016} = 2017/2 = 1008.5. []=1008[\dots]=1008.

    (C) a2015=22014(2016)=22014(3263)=22014(2563)=2201963a_{2015} = 2^{2014}(2016) = 2^{2014}(32 \cdot 63) = 2^{2014}(2^5 \cdot 63) = 2^{2019} \cdot 63. This is divisible by 220192^{2019}.

    (D) The sum Sn=k=1nak=k=1n(k+1)2k1S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (k+1)2^{k-1}. This is an Arithmetico-Geometric series sum, which evaluates to n2nn \cdot 2^n. We need n2n>1008n \cdot 2^n > 1008. 727=8967 \cdot 2^7 = 896, 828=20488 \cdot 2^8 = 2048. So the least nn is 8.

  5. The general term is Tn=2n13711(4n1)T_n = \frac{2n-1}{3 \cdot 7 \cdot 11 \cdots (4n-1)}. Let Dn=3711(4n1)D_n = 3 \cdot 7 \cdot 11 \cdots (4n-1). We can write Tn=12(1Dn11Dn)T_n = \frac{1}{2} \left( \frac{1}{D_{n-1}} - \frac{1}{D_n} \right) by defining D0=1D_0=1. This is a telescoping series. The sum is 12(1D0limN1DN)=12(10)=12\frac{1}{2} \left( \frac{1}{D_0} - \lim_{N \to \infty} \frac{1}{D_N} \right) = \frac{1}{2}(1-0) = \frac{1}{2}.

  6. If a,b,ca,b,c are in H.P., then b=2aca+cb = \frac{2ac}{a+c}. Since a,b,ca,b,c are unequal positive quantities, aca \ne c. By Power Mean Inequality, for n1n \ge 1, an+cn2>(a+c2)n\frac{a^n+c^n}{2} > (\frac{a+c}{2})^n. Also, a+c2>b\frac{a+c}{2} > b. Combining these, an+cn2>bn    an+cn>2bn\frac{a^n+c^n}{2} > b^n \implies a^n+c^n > 2b^n. This holds for n=100,3,2n=100, 3, 2. So (A), (B), (D) are correct. (C) a5+b5<2b5    a5<b5    a<ba^5+b^5 < 2b^5 \implies a^5 < b^5 \implies a<b, which is not always true.

  7. If 2a2,b2,2c22a^2, b^2, 2c^2 are in H.P., then 12a2,1b2,12c2\frac{1}{2a^2}, \frac{1}{b^2}, \frac{1}{2c^2} are in A.P. This implies 2b2=12a2+12c2    4a2c2=b2(a2+c2)\frac{2}{b^2} = \frac{1}{2a^2} + \frac{1}{2c^2} \implies 4a^2c^2 = b^2(a^2+c^2).

    (A) If 4a2b2,b2,4c2b24a^2-b^2, b^2, 4c^2-b^2 are in G.P., then (b2)2=(4a2b2)(4c2b2)(b^2)^2 = (4a^2-b^2)(4c^2-b^2), which simplifies to b2(a2+c2)=4a2c2b^2(a^2+c^2) = 4a^2c^2. This matches the condition. So (A) is correct.

    (C) If abc,acb,bca\frac{ab}{c}, \frac{ac}{b}, \frac{bc}{a} are in A.P., then 2acb=abc+bca    2a2c2=b2(a2+c2)2\frac{ac}{b} = \frac{ab}{c} + \frac{bc}{a} \implies 2a^2c^2 = b^2(a^2+c^2). This does not match the condition. So (C) is incorrect.

    (D) If abc,2acb,bca\frac{ab}{c}, \frac{2ac}{b}, \frac{bc}{a} are in A.P., then 2(2acb)=abc+bca    4a2c2=b2(a2+c2)2(\frac{2ac}{b}) = \frac{ab}{c} + \frac{bc}{a} \implies 4a^2c^2 = b^2(a^2+c^2). This matches the condition. So (D) is correct.