Solveeit Logo

Question

Mathematics Question on Conic sections

One of the vertices of the major axis of an ellipse is (1, 1) and one of the vertices of its minor axis is (-2, -1). If the centre of the ellipse is (-2, 1), then the equation of the ellipse is

A

(x+2)29+(y1)24=1\frac{(x+2)^2}{9}+\frac{(y-1)^2}{4}=1

B

(x+2)216+(y1)24=1\frac{(x+2)^2}{16}+\frac{(y-1)^2}{4}=1

C

(x2)29+(y+1)24=1\frac{(x-2)^2}{9}+\frac{(y+1)^2}{4}=1

D

(x2)216+(y+1)24=1\frac{(x-2)^2}{16}+\frac{(y+1)^2}{4}=1

E

(x+2)29+(y1)22=1\frac{(x+2)^2}{9}+\frac{(y-1)^2}{2}=1

Answer

(x+2)29+(y1)24=1\frac{(x+2)^2}{9}+\frac{(y-1)^2}{4}=1

Explanation

Solution

The correct option is (A): (x+2)29+(y1)24=1\frac{(x+2)^2}{9}+\frac{(y-1)^2}{4}=1