Solveeit Logo

Question

Question: One of the values of \({{i}^{i}}\) is \(\left( i=\sqrt{-1} \right)\) (a) \({{e}^{-\dfrac{\pi }{2}}...

One of the values of ii{{i}^{i}} is (i=1)\left( i=\sqrt{-1} \right)
(a) eπ2{{e}^{-\dfrac{\pi }{2}}}
(b) eπ2{{e}^{\dfrac{\pi }{2}}}
(c) eπ{{e}^{\pi }}
(d) eπ{{e}^{-\pi }}

Explanation

Solution

Hint: We first convert the given complex number as euler form then use the exponent property to solve further. Use definition of i and Euler’s formula as
eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x .

Complete step-by-step solution -
Definition of i:
i is an imaginary number which is solution of an equation:
x2=1x2+1=0{{x}^{2}}=-1\Rightarrow {{x}^{2}}+1=0
Use Euler’s formula: eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x
The left-hand side can be written as cisx\text{cis}x
So, cisx=cosx+isinx\text{cis}x=\cos x+i\sin x
Let x=π2x=\dfrac{\pi }{2}
By substituting above xx value into expression, we get:
cisπ2=cosπ2+isinπ2 cisπ2=i \begin{aligned} & \text{cis}\dfrac{\pi }{2}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2} \\\ & \text{cis}\dfrac{\pi }{2}=i \\\ \end{aligned}
We need value of ii{{i}^{i}}
So, the required expression can be written as:
(cisπ2)i{{\left( \text{cis}\dfrac{\pi }{2} \right)}^{i}}
We know cisπ2=eiπ2\text{cis}\dfrac{\pi }{2}={{e}^{i\dfrac{\pi }{2}}}
By substituting this into original equation, we get:
(eiπ2)i{{\left( {{e}^{i\dfrac{\pi }{2}}} \right)}^{i}}
By using general algebraic identity:
(ab)c=abc{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}
By using above condition, we get:
ei2π2{{e}^{{{i}^{2}}\dfrac{\pi }{2}}}
We know i is solution of equation x2=1{{x}^{2}}=-1
So, i2=1{{i}^{2}}=-1
By substituting, we get:
eπ2{{e}^{-\dfrac{\pi }{2}}}
So, ii=eπ2{{i}^{i}}={{e}^{-\dfrac{\pi }{2}}}
Therefore eπ2{{e}^{-\dfrac{\pi }{2}}} is value of required expression
Option (a) is correct.

Note: While using Euler’s formula be careful what to substitute in Cis and always keep sinx\sin x as imaginary if you keep cosx\cos x you may lead to wrong answer.
Idea of using Cis and again using back eix{{e}^{ix}} is just for convenience you can directly use eix{{e}^{ix}} .