Solveeit Logo

Question

Question: One of the roots of the given equation \(\left| \begin{matrix} x + a & b & c \\ b & x + c & a \\ c ...

One of the roots of the given equation

x+abcbx+cacax+b=0\left| \begin{matrix} x + a & b & c \\ b & x + c & a \\ c & a & x + b \end{matrix} \right| = 0 is.

A

(a+b)- (a + b)

B

(b+c)- (b + c)

C

a- a

D

(a+b+c)- (a + b + c)

Answer

(a+b+c)- (a + b + c)

Explanation

Solution

x+abcbx+cacax+b=0\left| \begin{matrix} x + a & b & c \\ b & x + c & a \\ c & a & x + b \end{matrix} \right| = 0

(x+a+b+c)1bc1x+ca1ax+b=0\Rightarrow (x + a + b + c)\left| \begin{matrix} 1 & b & c \\ 1 & x + c & a \\ 1 & a & x + b \end{matrix} \right| = 0 ,

=a{a2+ab2a2ab]=a3=i= a\{ a^{2} + ab - 2a^{2} - ab\rbrack = - a^{3} = i

x=(a+b+c)\Rightarrow x = - (a + b + c) is one of the root of the equation.