Solveeit Logo

Question

Question: One of the resonating structures of \(SO_4^{ - 2}\) is as shown. Which set of formal charge on oxyge...

One of the resonating structures of SO42SO_4^{ - 2} is as shown. Which set of formal charge on oxygen and bond order is correct?

(A) -0.5 and 1.5
(B) 1.5 and 3
(C) 2 and 3
(D) 1.5 and 1.5

Explanation

Solution

To solve this question we should know the formula to calculate set formal charge and bond order as well as the theory behind it. The formal charge on oxygen in SO42SO_4^{ - 2} is equal to the formal charge on each oxygen and takes an average of all.

Complete step by step answer:
The formal charge is the number of charges on an atom in a molecule, under assumption that electrons in all bonds are equally shared irrespective of the relative electronegativity.
Formula of formal charges:
Formal charge = number of valence electron in free atom  number of lone pair electrons  12number of bond pair electrons.Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.

Carefully refer to the diagram, where each oxygen is numbered.
-The formal charges of oxygen 1:
Formal charge = number of valence electron in free atom  number of lone pair electrons  12number of bond pair electrons.Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.
= 6 - 4 - 2
= 0
-The formal charges of oxygen 2:
Formal charge = number of valence electron in free atom  number of lone pair electrons  12number of bond pair electrons.Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.
= 6 - 6 - 1
= -1
-The formal charges of oxygen 3:
Formal charge = number of valence electron in free atom  number of lone pair electrons  12number of bond pair electrons.Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.
= 6 - 4 - 2
= 0

-The formal charges of oxygen 4:
Formal charge = number of valence electron in free atom  number of lone pair electrons  12number of bond pair electrons.Formal{\text{ }}charge{\text{ }} = {\text{ }}number{\text{ }}of{\text{ }}valence{\text{ }}electron{\text{ }}in{\text{ }}free{\text{ }}atom{\text{ }} - {\text{ }}number{\text{ }}of{\text{ }}lone{\text{ }}pair{\text{ }}electrons{\text{ }} - {\text{ }}\dfrac{1}{2}number{\text{ }}of{\text{ }}bond{\text{ }}pair{\text{ }}electrons.
= 6 - 6 - 1
= -1
The total formal charges on oxygen in SO42SO_4^{ - 2} is:

Formal charges in oxygen =    sum of formal charge on oxygen 1,2,3 and 4Total number of oxygenFormal{\text{ }}charges{\text{ }}in{\text{ }}oxygen{\text{ }} = \;\;\dfrac{{sum{\text{ }}of{\text{ }}formal{\text{ }}charge{\text{ }}on{\text{ }}oxygen{\text{ }}1,2,3{\text{ }}and{\text{ }}4}}{{Total{\text{ }}number{\text{ }}of{\text{ }}oxygen}}
=0+(1)+0+(1)4= \dfrac{{0 + ( - 1) + 0 + ( - 1)}}{4}
= - 0.5
Thus, formal charge on SO42SO_4^{ - 2} is - 0.5

Bond order is the number of chemical bonds present between the pairs of atoms
bond order=number of bondsTotal number of atom sharing the bondbond{\text{ }}order = \dfrac{{number{\text{ }}of{\text{ }}bonds}}{{Total{\text{ }}number{\text{ }}of{\text{ }}atom{\text{ }}sharing{\text{ }}the{\text{ }}bond}}
=64= \dfrac{6}{4}
= 1.5
So, the correct answer is “Option A”.

Note: Generally, Formula to calculate bond pair:
Bond order =12(NbNa)Bond{\text{ }}order{\text{ }} = \dfrac{1}{2}({N_b} - {N_a})
Where, Nb{N_b} = number of bonding electrons
Na{N_a} = number of antibonding electrons
But for compound that has resonating structures, then the formula will be
bond order=number of bondsTotal number of atom sharing the bondbond{\text{ }}order = \dfrac{{number{\text{ }}of{\text{ }}bonds}}{{Total{\text{ }}number{\text{ }}of{\text{ }}atom{\text{ }}sharing{\text{ }}the{\text{ }}bond}}