Question
Mathematics Question on Area under Simple Curves
One of the points of intersection of the curves y=1+3x−2x2 and y=x1 is (21,2). Let the area of the region enclosed by these curves be 241(ℓ5+m)−nloge(1+5), where ℓ,m,n∈N. Then ℓ+m+n is equal to:
A
32
B
30
C
29
D
31
Answer
30
Explanation
Solution
A=∫1/21+5(1+3x−2x2−x1)dx
A=[x+23x2−32x3−lnx]1/21+5
A=((1+5)+23(1+5)2−32(1+5)3−ln(1+5))−(21+23(1/2)2−32(1/2)3−ln(21))
Simplify step-by-step:
A=(1+5)+23(1+5)2−32(1+5)3−ln(1+5)−(21+83−121+ln2)
A=21+5+23(1+25+5)−32(1+35+3(5)+55)−ln(1+5)−21−83+121−ln2
Combine and simplify further:
A=5(1+23−2)+815−34+121−ln(1+5)
A=24145+2415−ln(1+5)
Final answer: A=24145+2415−ln(1+5)