Solveeit Logo

Question

Mathematics Question on Area under Simple Curves

One of the points of intersection of the curves y=1+3x2x2y = 1 + 3x - 2x^2 and y=1xy = \frac{1}{x} is (12,2)\left( \frac{1}{2}, 2 \right). Let the area of the region enclosed by these curves be 124(5+m)nloge(1+5),\frac{1}{24} \left( \ell \sqrt{5} + m \right) - n \log_e \left( 1 + \sqrt{5} \right), where ,m,nN\ell, m, n \in \mathbb{N}. Then +m+n\ell + m + n is equal to:

A

32

B

30

C

29

D

31

Answer

30

Explanation

Solution

A=1/21+5(1+3x2x21x)dxA = \int_{1/2}^{1+\sqrt{5}} \left(1 + 3x - 2x^2 - \frac{1}{x}\right) \, dx
A=[x+3x222x33lnx]1/21+5A = \left[ x + \frac{3x^2}{2} - \frac{2x^3}{3} - \ln x \right]_{1/2}^{1+\sqrt{5}}
A=((1+5)+3(1+5)222(1+5)33ln(1+5))(12+3(1/2)222(1/2)33ln(12))A = \left( \left(1 + \sqrt{5}\right) + \frac{3\left(1+\sqrt{5}\right)^2}{2} - \frac{2\left(1+\sqrt{5}\right)^3}{3} - \ln\left(1+\sqrt{5}\right) \right) - \left( \frac{1}{2} + \frac{3\left(1/2\right)^2}{2} - \frac{2\left(1/2\right)^3}{3} - \ln\left(\frac{1}{2}\right) \right)

Simplify step-by-step:

A=(1+5)+32(1+5)223(1+5)3ln(1+5)(12+38112+ln2)A = (1 + \sqrt{5}) + \frac{3}{2}(1+\sqrt{5})^2 - \frac{2}{3}(1+\sqrt{5})^3 - \ln(1+\sqrt{5}) - \left( \frac{1}{2} + \frac{3}{8} - \frac{1}{12} + \ln 2 \right)
A=12+5+32(1+25+5)23(1+35+3(5)+55)ln(1+5)1238+112ln2A = \frac{1}{2} + \sqrt{5} + \frac{3}{2}(1 + 2\sqrt{5} + 5) - \frac{2}{3}(1 + 3\sqrt{5} + 3(5) + 5\sqrt{5}) - \ln(1+\sqrt{5}) - \frac{1}{2} - \frac{3}{8} + \frac{1}{12} - \ln 2

Combine and simplify further:
A=5(1+322)+15843+112ln(1+5)A = \sqrt{5}\left(1 + \frac{3}{2} - 2\right) + \frac{15}{8} - \frac{4}{3} + \frac{1}{12} - \ln(1+\sqrt{5})
A=14524+1524ln(1+5)A = \frac{14\sqrt{5}}{24} + \frac{15}{24} - \ln(1+\sqrt{5})

Final answer: A=14524+1524ln(1+5)A = \frac{14\sqrt{5}}{24} + \frac{15}{24} - \ln(1+\sqrt{5})