Solveeit Logo

Question

Question: One mole of \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)and one mole of \({{\text{C}}_{\text{2...

One mole of CH3COOH{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}and one mole of C2H5OH{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH}}reacts to produce 23mol\dfrac{{\text{2}}}{{\text{3}}}{\text{mol}} of CH3COOC2H5{\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}. The equilibrium constant is:
A. 2{\text{2}}
B.  + 2{\text{ + 2}}
C.  - 4{\text{ - 4}}
D. 4{\text{4}}

Explanation

Solution

To reach out to the solution of the given problem we will define the moles of the substances before reaction and then after reaction. After that we will use the formula of equilibrium constant.

Complete step by step answer: For the reaction, aA + bBcC + dD{\text{aA + bB}} \rightleftharpoons {\text{cC + dD}}.
Equilibrium constant is KC = [C]c[D]d[A]a[B]b{{\text{K}}_{\text{C}}}{\text{ = }}\dfrac{{{{{\text{[C]}}}^{\text{c}}}{{{\text{[D]}}}^{\text{d}}}}}{{{{{\text{[A]}}}^{\text{a}}}{{{\text{[B]}}}^{\text{b}}}}}. Equilibrium constant is nothing but the ratio of the product of the concentration of the products raised to the power of their stoichiometric coefficient to the product of the concentrations of the reactants raised to the power of the stoichiometric coefficients.
For the given reaction, CH3COOH + C2H5OHCH3COOC2H5 + H2O{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH + }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH}} \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O}}.
We will define the number of moles at the start of the reaction.
CH3COOH + C2H5OHCH3COOC2H5 + H2O{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH + }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH}} \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{ + }}{{\text{H}}_{\text{2}}}{\text{O}}.
At start, 1{\text{1}} 1{\text{1}} 0{\text{0}} 0{\text{0}}
At equilibrium, 1 - 23{\text{1 - }}\dfrac{{\text{2}}}{{\text{3}}} 1 - 23{\text{1 - }}\dfrac{{\text{2}}}{{\text{3}}} 23\dfrac{{\text{2}}}{{\text{3}}} 23\dfrac{{\text{2}}}{{\text{3}}}
23\dfrac{{\text{2}}}{{\text{3}}} is the amount of moles of CH3COOC2H5{\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}produce in reaction.
Now, let the total volume be VL.
So, the concentration of the reactants:
[CH3COOH] = 13Vmol/L{\text{[C}}{{\text{H}}_{\text{3}}}{\text{COOH] = }}\dfrac{{\text{1}}}{{\text{3}}}{\text{Vmol/L}}
[C2H5OH] = 13Vmol/L{\text{[}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH] = }}\dfrac{{\text{1}}}{{\text{3}}}{\text{Vmol/L}}.
The concentration of the products will be as follows:

[CH3COOC2H5] = 23Vmol/L{\text{[C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{] = }}\dfrac{{\text{2}}}{{\text{3}}}{\text{Vmol/L}}
[H2O] = 23Vmol/L{\text{[}}{{\text{H}}_{\text{2}}}{\text{O] = }}\dfrac{{\text{2}}}{{\text{3}}}{\text{Vmol/L}}.
Now, after calculating all the required concentrations of the reactants and the products we will substitute that into the expression of equilibrium constant KC = [C]c[D]d[A]a[B]b{{\text{K}}_{\text{C}}}{\text{ = }}\dfrac{{{{{\text{[C]}}}^{\text{c}}}{{{\text{[D]}}}^{\text{d}}}}}{{{{{\text{[A]}}}^{\text{a}}}{{{\text{[B]}}}^{\text{b}}}}}.
$$$$${{\text{K}}{\text{C}}}{\text{ = }}\dfrac{{{{{\text{[CH}}{}{\text{3}}{\text{COO}}{{\text{C}}{\text{2}}}{{\text{H}}{\text{5}}}{\text{]}}}^{\text{1}}}{{{\text{[}}{{\text{H}}{\text{2}}}{\text{O]}}}^{\text{1}}}}}{{{{{\text{[C}}{{\text{H}}{\text{3}}}{\text{COOH]}}}^{\text{1}}}{{{\text{[}}{{\text{C}}{\text{2}}}{{\text{H}}{\text{5}}}{\text{OH]}}}^{\text{1}}}}}.Substitutingthevalues,. Substituting the values, {{\text{K}}{\text{C}}}{\text{ = }}\dfrac{{\dfrac{{\text{2}}}{{\text{3}}}{\text{Vmol/L \times }}\dfrac{{\text{2}}}{{\text{3}}}{\text{Vmol/L}}}}{{\dfrac{{\text{1}}}{{\text{3}}}{\text{Vmol/L \times }}\dfrac{{\text{1}}}{{\text{3}}}{\text{Vmol/L}}}}.. {{\text{K}}{\text{C}}}{\text{ = }}\dfrac{{\dfrac{{\text{4}}}{{\text{9}}}{{\text{V}}^{\text{2}}}{{{\text{(mol/L)}}}^{\text{2}}}}}{{\dfrac{{\text{1}}}{{\text{9}}}{{\text{V}}^{\text{2}}}{{{\text{(mol/L)}}}^{\text{2}}}}}(Theunitswillgetcancelled.Therefore,theequilibriumconstantisaconstantwithnounits.)(The units will get cancelled. Therefore, the equilibrium constant is a constant with no units.) {{\text{K}}_{\text{C}}}{\text{ = 4}}{\text{.}}$

So, the correct answer is “Option D”.

Note: The units should be kept in mind while writing the concentrations. Proper units should be used. Moreover, the equation should be balanced and calculations should be carefully done while calculating the equilibrium constant.