Solveeit Logo

Question

Chemistry Question on Thermodynamics terms

One mole of an ideal gas is allowed to expand reversibly and adiabatically from a temperature of 27C27^{\circ} C The work done is 3kJ3 \,kJ. The final temperature of the gas is equal to [Cv=20KJ1]:\left[C_{v}=20\, K J^{-1}\right]:

A

75 K

B

150 K

C

225 K

D

300 K

Answer

150 K

Explanation

Solution

From first law of thermodynamics, ΔU=q+W\Delta U = q + W As we know that, for adiabatic condition, q=0q =0 ΔU=W..(1)\therefore \Delta U = W \ldots . .(1) At constant volume, ΔU=nCvΔT..(2)\Delta U = n C _{ v } \Delta T \ldots . .(2) From eq n(1)&(2)^{ n }(1) \&(2), we have W=nCvΔT..(3)W = n C _{ v } \Delta T \ldots . .(3) Given:- Ti=27C=(27+273)K=300KT _{ i }=27^{\circ} C =(27+273) K =300 K Tf=T(T _{ f }= T ( say )=)= ? ΔT=TfTi=(T300)\Delta T = T _{ f }- T _{ i }=( T -300) Cv=20J/KC _{ v }=20 J / K - mol W=3kJ=3×103J[W =-3 kJ =-3 \times 10^{3} J [\because Work done by the gas is negative ]] T3000=1×20×(T300)T -3000=1 \times 20 \times( T -300) T=300150=150K\Rightarrow T =300-150=150 K