Solveeit Logo

Question

Question: One mole of an ideal gas at \(\text{ 300 K }\)in thermal contact with surroundings expands isotherma...

One mole of an ideal gas at  300 K \text{ 300 K }in thermal contact with surroundings expands isothermally from 1.0 L to 2.0 L against a constant pressure of  3.0 atm \text{ 3}\text{.0 atm }. In this process, the change in entropy of surrounding  ( !!Δ!! Ssurr) \text{ }\left( \text{ }\\!\\!\Delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}} \right)\text{ } in  J K1 \text{ J }{{\text{K}}^{-1\text{ }}} is  (1 L atm = 101.3 J )\text{ }\left( 1\text{ L atm = 101}\text{.3 J } \right)
A)  5.763 \text{ 5}\text{.763 }
B) 1.013 \text{ 1}\text{.013 }
C)  1.013 \text{ }-\text{ 1}\text{.013 }
D)  5.763 \text{ }-\text{5}\text{.763 }

Explanation

Solution

entropy is defined as the change in the heat of the system at the absolute temperature (T). !!δ!! Ssurr =  !!δ!! qsurrT \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}}\text{ = }\frac{\text{ }\\!\\!\delta\\!\\!\text{ }{{\text{q}}_{\text{surr}}}}{\text{T}}\text{ } .during the expansion the heat is gained by the surrounding thus from the first law of thermodynamics the  !!δ!! q = !!δ!! U + !!δ!! w \text{ }\\!\\!\delta\\!\\!\text{ q = }\\!\\!\delta\\!\\!\text{ U + }\\!\\!\delta\\!\\!\text{ w } change in the heat will be equal to the !!δ!! wSurr-\text{ }\\!\\!\delta\\!\\!\text{ }{{\text{w}}_{\text{Surr}}}.

Complete step by step solution:
We are given the following data:
The number of moles of gas is,  n = 1 \text{ n = 1 }
The absolute temperature of an ideal gas is equal to,  300 K \text{ 300 K }
The gas expands isothermally from the volume  V1= 1.0 L \text{ }{{\text{V}}_{\text{1}}}=\text{ 1}\text{.0 L } to the volume  V2= 2.0 L \text{ }{{\text{V}}_{2}}=\text{ 2}\text{.0 L } against the constant pressure of  P = 3.0 atm \text{ P = 3}\text{.0 atm }
We are interested to determine the change in the entropy of the system  Δ\text{ }\Delta \text{S }
The entropy is a measure of the randomness of the system. Mathematically it is expressed as the ratio of change in heat per unit absolute temperature .the relation is stated as follows,
 !!δ!! Ssurr =  !!δ!! qsurrT \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}}\text{ = }\frac{\text{ }\\!\\!\delta\\!\\!\text{ }{{\text{q}}_{\text{surr}}}}{\text{T}}\text{ }
Where  !!δ!! qsurr \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{q}}_{\text{surr}}}\,\text{ } is the heat gained by the surrounding and T is the absolute temperature.
If U is the internal enthalpy of a system. Suppose the system absorbs the heat q from the surrounding and also performs some work which is equal to w. The relation between the internal enthalpy, heat, and work is given as follows,
 !!δ!! q = !!δ!! U + !!δ!! w \text{ }\\!\\!\delta\\!\\!\text{ q = }\\!\\!\delta\\!\\!\text{ U + }\\!\\!\delta\\!\\!\text{ w } (1)
The isothermal process is a thermodynamic process in which the temperature of the system remains constant. That is  ΔT = 0 \text{ }\Delta \text{T = 0 } . Since for ideal gas, the internal enthalpy U depends on the temperature, for an isothermal expansion process the internal enthalpy is equal to zero, δU = 0 \text{ }\delta \text{U = 0 } .
Thus equation (1) becomes,
 !!δ!! q = !!δ!! w \text{ }\\!\\!\delta\\!\\!\text{ q = }\\!\\!\delta\\!\\!\text{ w } (2)
Now, heat is gained by the surrounding and heat is lost by the system. Therefore, we can write the relation (2) as,
 !!δ!! qsystem =  !!δ!! wSurr \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{q}}_{\text{system}}}\text{ = }-\text{ }\\!\\!\delta\\!\\!\text{ }{{\text{w}}_{\text{Surr}}}\text{ } (3)
The entropy of the surrounding is given by the ratio of the heat gained by the surrounding to the absolute temperature. Thus the entropy for surrounding written as,
 !!δ!! Ssurr =  !!δ!! qsurrT \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}}\text{ = }\frac{\text{ }\\!\\!\delta\\!\\!\text{ }{{\text{q}}_{\text{surr}}}}{\text{T}}\text{ }
From (3), the entropy is written as,
 !!δ!! Ssurr =  !!δ!! qsurrT =  !!δ!! wT \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}}\text{ = }\frac{\text{ }\\!\\!\delta\\!\\!\text{ }{{\text{q}}_{\text{surr}}}}{\text{T}}\text{ = }\frac{-\text{ }\\!\\!\delta\\!\\!\text{ w}}{\text{T}}\text{ }
The work done is written as the product of pressure and change in volume.
 !!δ!! Ssurr = P(dV)T = P(V2V1)T \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}}\text{ = }\frac{-\text{P}\left( \text{dV} \right)}{\text{T}}\text{ = }\frac{-\text{P}\left( {{\text{V}}_{\text{2}}}-{{\text{V}}_{\text{1}}} \right)}{\text{T}}\text{ }
Substitute the values in the equation .we have,
 !!δ!! Ssurr = 3(2.01.0)300 × 103 Joules   !!δ!! Ssurr = 1.013 joules  \begin{aligned} & \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}}\text{ = }\frac{-3\left( 2.0-1.0 \right)}{300}\text{ }\times \text{ 103 Joules } \\\ & \therefore \text{ }\\!\\!\delta\\!\\!\text{ }{{\text{S}}_{\text{surr}}}\text{ = }-1.013\text{ joules } \\\ \end{aligned}
The change in entropy for the ideal gas is equal to  1.013 \text{ }-1.013\text{ } joules.

Hence, (C) is the correct option.

Note: Note that, if the work is done by the surrounding on the system (i.e. compression of gas) then the w is taken as the positive, and for isothermal process the relation becomes !!δ!! q =  !!δ!! w \text{ }\\!\\!\delta\\!\\!\text{ q = }-\text{ }\\!\\!\delta\\!\\!\text{ w }. However, when work is done by the system on the surrounding (i.e. expansion) the w took as the negative, and for isothermal process the relation becomes !!δ!! q = !!δ!! w \text{ }\\!\\!\delta\\!\\!\text{ q = }\\!\\!\delta\\!\\!\text{ w }.