Solveeit Logo

Question

Chemistry Question on Thermodynamics terms

One mole of an ideal gas at temperature T1T_{1} expands according to the law (P/V)\left(\right.P/V\left.\right) \, = constant. Find the work done when the final temperature becomes T2T_{2} .

A

R(T2T1)R\left(\right.T_{2}-T_{1}\left.\right)

B

(R/2)(T2T1)\left(R/2\right)\left(\right.T_{2}-T_{1}\left.\right)

C

(R/4)(T2T1)\left(R/4\right)\left(\right.T_{2}-T_{1}\left.\right)

D

PV(T2T1)PV\left(\right.T_{2}-T_{1}\left.\right)

Answer

(R/2)(T2T1)\left(R/2\right)\left(\right.T_{2}-T_{1}\left.\right)

Explanation

Solution

W=V1V2PdV=V1V2KVdVW=\displaystyle \int _{V_{1}}^{V_{2}}PdV=\displaystyle \int _{\text{V}_{1}}^{\text{V}_{2}}KVdV (pV=K=constant)\left(\because \frac{\textit{p}}{\textit{V}} = \textit{K} = \text{constant}\right) W=12k(V22V12)\therefore \textit{W}=\frac{1}{2}\textit{k}\left(\textit{V}_{2}^{2} - \textit{V}_{1}^{2}\right) PV=RTPV=RT But P=RTP=RT KV2=RT\therefore \textit{KV}^{2}=\textit{RT} or K(V22V12)=R(T2T1)K\left(V_{2}^{2} - V_{1}^{2}\right)=R\left(T_{2} - T_{1}\right) W=R2(T2T1)\therefore W=\frac{R}{2}\left(T_{2} - T_{1}\right)