Question
Question: One mole of a monoatomic ideal gas starting from state A, goes through B and C to state D, as shown ...
One mole of a monoatomic ideal gas starting from state A, goes through B and C to state D, as shown in the figure. Total magnitude of change in entropy (in J K⁻¹) during this process is ________ (Nearest integer)

9 J/K
Solution
We first determine the temperatures (in arbitrary units proportional to PV) at the four states (using PV∝T for an ideal gas):
- State A: P=2 atm, V=10 dm³ ⇒TA∝2×10=20.
- State B: P=2 atm, V=20 dm³ ⇒TB∝2×20=40.
- State C: P drops to 1 atm at constant volume 20 dm³ ⇒TC∝1×20=20.
- State D: P=1 atm, V=10 dm³ ⇒TD∝1×10=10.
Step 1. Process AB (Isobaric expansion at P=2 atm):
For an isobaric process the entropy change is:
ΔSAB=nCPlnTATB.For a monoatomic gas,
CP=25R,R=325J/mol\cdotpK⇒CP=25×325=6125J/K.And
lnTATB=ln2040=ln2≈0.7.Thus,
ΔSAB=6125×0.7≈14.58J/K.Step 2. Process BC (Isochoric at V=20 dm³):
For an isochoric process:
ΔSBC=nCVlnTBTC.For a monoatomic gas,
CV=23R=23×325=225=12.5J/K.And
lnTBTC=ln4020=ln(21)=−ln2≈−0.7.Thus,
ΔSBC=12.5×(−0.7)=−8.75J/K.Step 3. Process CD (Isobaric compression at P=1 atm):
Again for an isobaric process:
ΔSCD=nCPlnTCTD.Here,
lnTCTD=ln2010=ln(21)=−ln2≈−0.7.So,
ΔSCD=6125×(−0.7)≈−14.58J/K.Total entropy change from A to D:
ΔStotal=ΔSAB+ΔSBC+ΔSCD=14.58−8.75−14.58≈−8.75J/K.Since the question asks for the total magnitude of change in entropy, we take the absolute value:
∣ΔStotal∣≈8.75J/K(Nearest integer: 9 J/K).Explanation (minimal):
Calculate temperatures from PV values. Use ΔS=nCPlnT1T2 for isobaric and ΔS=nCVlnT1T2 for isochoric processes. Sum the entropy changes along A→B, B→C, and C→D, then take the absolute value.