Solveeit Logo

Question

Question: One mole of a monoatomic ideal gas starting from state A, goes through B and C to state D, as shown ...

One mole of a monoatomic ideal gas starting from state A, goes through B and C to state D, as shown in the figure. Total magnitude of change in entropy (in J K⁻¹) during this process is ________ (Nearest integer)

Answer

9 J/K

Explanation

Solution

We first determine the temperatures (in arbitrary units proportional to PV) at the four states (using PVTPV\propto T for an ideal gas):

  • State A: P=2P=2 atm, V=10V=10 dm³ TA2×10=20\Rightarrow T_A\propto 2\times10=20.
  • State B: P=2P=2 atm, V=20V=20 dm³ TB2×20=40\Rightarrow T_B\propto 2\times20=40.
  • State C: PP drops to 1 atm at constant volume 2020 dm³ TC1×20=20\Rightarrow T_C\propto 1\times20=20.
  • State D: P=1P=1 atm, V=10V=10 dm³ TD1×10=10\Rightarrow T_D\propto 1\times10=10.

Step 1. Process AB (Isobaric expansion at P=2P=2 atm):

For an isobaric process the entropy change is:

ΔSAB=nCPlnTBTA.\Delta S_{AB} = n C_P \ln \frac{T_B}{T_A}.

For a monoatomic gas,

CP=52R,R=253J/mol\cdotpKCP=52×253=1256J/K.C_P = \frac{5}{2} R,\quad R=\frac{25}{3}\, \text{J/mol·K}\quad \Rightarrow\quad C_P = \frac{5}{2}\times\frac{25}{3}=\frac{125}{6}\, \text{J/K}.

And

lnTBTA=ln4020=ln20.7.\ln\frac{T_B}{T_A} = \ln\frac{40}{20}=\ln 2\approx 0.7.

Thus,

ΔSAB=1256×0.714.58J/K.\Delta S_{AB} = \frac{125}{6}\times 0.7\approx 14.58\, \text{J/K}.

Step 2. Process BC (Isochoric at V=20V=20 dm³):

For an isochoric process:

ΔSBC=nCVlnTCTB.\Delta S_{BC} = n C_V \ln \frac{T_C}{T_B}.

For a monoatomic gas,

CV=32R=32×253=252=12.5J/K.C_V = \frac{3}{2}R = \frac{3}{2}\times\frac{25}{3}=\frac{25}{2}=12.5\, \text{J/K}.

And

lnTCTB=ln2040=ln(12)=ln20.7.\ln\frac{T_C}{T_B} = \ln\frac{20}{40}=\ln\left(\frac{1}{2}\right)=-\ln 2 \approx -0.7.

Thus,

ΔSBC=12.5×(0.7)=8.75J/K.\Delta S_{BC}=12.5\times(-0.7)=-8.75\, \text{J/K}.

Step 3. Process CD (Isobaric compression at P=1P=1 atm):

Again for an isobaric process:

ΔSCD=nCPlnTDTC.\Delta S_{CD} = n C_P \ln \frac{T_D}{T_C}.

Here,

lnTDTC=ln1020=ln(12)=ln20.7.\ln\frac{T_D}{T_C}=\ln\frac{10}{20}=\ln\left(\frac{1}{2}\right)=-\ln 2\approx -0.7.

So,

ΔSCD=1256×(0.7)14.58J/K.\Delta S_{CD}=\frac{125}{6}\times (-0.7)\approx -14.58\, \text{J/K}.

Total entropy change from A to D:

ΔStotal=ΔSAB+ΔSBC+ΔSCD=14.588.7514.588.75J/K.\Delta S_{total} = \Delta S_{AB} + \Delta S_{BC} + \Delta S_{CD} = 14.58 - 8.75 - 14.58 \approx -8.75\, \text{J/K}.

Since the question asks for the total magnitude of change in entropy, we take the absolute value:

ΔStotal8.75J/K(Nearest integer: 9 J/K).|\Delta S_{total}| \approx 8.75\, \text{J/K}\quad \text{(Nearest integer: }9\text{ J/K)}.

Explanation (minimal):
Calculate temperatures from PVPV values. Use ΔS=nCPlnT2T1\Delta S = n\,C_P\ln\frac{T_2}{T_1} for isobaric and ΔS=nCVlnT2T1\Delta S = n\,C_V\ln\frac{T_2}{T_1} for isochoric processes. Sum the entropy changes along A→B, B→C, and C→D, then take the absolute value.