Solveeit Logo

Question

Question: One mole of a gas expands obeying the relation as shown in P-V diagram. The maximum temperature in t...

One mole of a gas expands obeying the relation as shown in P-V diagram. The maximum temperature in this process is equal to :

A

P0V0R\frac{P_{0}V_{0}}{R}

B

3P0V0R\frac{3P_{0}V_{0}}{R}

C

9P0V08R\frac{9P_{0}V_{0}}{8R}

D

None

Answer

9P0V08R\frac{9P_{0}V_{0}}{8R}

Explanation

Solution

The slope of the graph is, m = –p02V0\frac{p_{0}}{2V_{0}}

The equation of this graph is given by

P = –p0V2V0\frac{p_{0}V}{2V_{0}} +3p02\frac{3p_{0}}{2}

̃ =nRTV\frac{nRT}{V}= –p02V0\frac{p_{0}}{2V_{0}}+3p02\frac{3p_{0}}{2}

̃ T –p02nRV0\frac{p_{0}}{2nRV_{0}}V2 +3p02nR\frac{3p_{0}}{2nR}V

dTdV\frac{dT}{dV}= –2p0V2nRV0\frac{2p_{0}V}{2nRV_{0}}+3p02nR\frac{3p_{0}}{2nR} = 0

̃ =p0VnRV0\frac{p_{0}V}{nRV_{0}}=3P02nR\frac{3P_{0}}{2nR} ̃ V =32\frac{3}{2}V0

At V =3V02\frac{3V_{0}}{2}, temperature will be maximum [n = 1]

Tmax = –p02RV0\frac{p_{0}}{2RV_{0}}×9V024\frac{9V_{0}^{2}}{4} +3p02R\frac{3p_{0}}{2R}×3V02\frac{3V_{0}}{2}

̃ –98\frac { 9 } { 8 } p0V0R\frac{p_{0}V_{0}}{R} + 94\frac { 9 } { 4 } p0V0R\frac{p_{0}V_{0}}{R}

̃ 98\frac { 9 } { 8 } p0V0R\frac{p_{0}V_{0}}{R}