Solveeit Logo

Question

Question: one mole each \[Fe{C_2}{O_4}\,\], \[F{e_2}{({C_2}{O_4})_3}\],\[\,\,FeS{O_4}\] ,\[F{e_2}{(S{O_4})_3}\...

one mole each FeC2O4Fe{C_2}{O_4}\,, Fe2(C2O4)3F{e_2}{({C_2}{O_4})_3},FeSO4\,\,FeS{O_4} ,Fe2(SO4)3F{e_2}{(S{O_4})_3}, will react with how many moles of acidified KMnO4KMn{O_4}​?
(A) 11
(B) 22
(C) 33
(D) 55

Explanation

Solution

To find the total number of moles of KMnO4KMn{O_4} we have to calculate the n factor value of KMnO4KMn{O_4} by comparing the number of gram equivalent of Oxidising agent and the number of gram equivalent of reducing agent.

Complete solution:
Now we will compare the number of gram equivalent of oxidizing agent which is KMnO4KMn{O_4} and the number of gram equivalent of reducing agents which are FeC2O4Fe{C_2}{O_4}\,, Fe2(C2O4)3F{e_2}{({C_2}{O_4})_3},FeSO4\,\,FeS{O_4} ,Fe2(SO4)3F{e_2}{(S{O_4})_3}. Number of gram equivalent is given as:
Mole{s_{O.A.}}\,\, \times \,\,n{{ }}facto{r_{O.A.}}\; = Mole{s_{R.A.}}{{ }} \times n{{ }}facto{r_{R.A.}}$$$${M_{KMn{o_4}}} \times \,\,n.{f_{KMn{o_4}}} = ({M_{Fe{C_2}{O_4}\,}} \times \,\,n.{f_{Fe{C_2}{O_4}\,}})\, + ({M_{F{e_2}{{({C_2}{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{({C_2}{O_4})}_3}\,}})\, + ({M_{FeS{O_4}\,}} \times \,\,n.{f_{FeS{O_4}\,}}) + ({M_{\,F{e_2}{{(S{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{(S{O_4})}_3}\,}})Now we will calculate the n factor of KMnO4KMn{O_4}. In acidic medium the reaction of KMnO4KMn{O_4} reduces from MnO4MnO_4^ - to Mn2+M{n^{2 + }} the reaction for the same is:
MnO4+8H++5eMn2++4H2OMnO_4^ - \, + \,\,8{H^ + } + 5{e^ - } \to M{n^{2 + }} + 4{H_2}O
n Factor for KMnO4KMn{O_4} =5 = 5, Now we will calculate the n factor of FeC2O4Fe{C_2}{O_4}\,.
In FeC2O4Fe{C_2}{O_4}\,Iron is in +2 + 2 oxidation state, so it will get oxidised to achieve the highest +3 + 3Oxidation state. The reaction will be:
FeC2O4+KMnO4Fe3++CO2++Mn2+Fe{C_2}{O_4}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,C{O^{2 + }} + M{n^{2 + }}
In this Fe2+Fe3++1eF{e^{2 + }} \to F{e^{3 + }} + 1{e^ - } and C2O422CO2+2e{C_2}O_4^{2 - } \to 2C{O_2} + 2e so n Factor for Fe{C_2}{O_4}\,$$$ = 3$ Now we will calculate the n factor of F{e_2}{({C_2}{O_4})_3}.In. In F{e_2}{({C_2}{O_4})_3}Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$ Oxidation state. The reaction will be: F{e_2}{({C_2}{O_4})_3}, + ,,KMn{O_4}, \to F{e^{3 + }} + ,,C{O^{2 + }} + M{n^{2 + }} In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and ${C_2}O_4^{2 - } \to 2C{O_2} + 2e$ and there are two iron atoms so n Factor forF{e_2}{({C_2}{O_4})_3} = 6$. Now we will calculate the n factor of $$\,\,FeS{O_4}$$. In $$\,\,FeS{O_4}$$Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$Oxidation state. The reaction will be: $$\,\,FeS{O_4}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,S{O_4}^{2 - } + M{n^{2 + }}$$ In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and so n Factor for$$\,\,FeS{O_4} = 1$
Fe2(SO4)3F{e_2}{(S{O_4})_3} do not oxidise. So its n factor will be zero.
Now putting these values in the gram equivalent equation then we will get:

MKMno4×n.fKMno4=(MFeC2O4×n.fFeC2O4)+(MFe2(C2O4)3×n.fFe2(C2O4)3)+(MFeSO4×n.fFeSO4)+(MFe2(SO4)3×n.fFe2(SO4)3){M_{KMn{o_4}}} \times \,\,n.{f_{KMn{o_4}}} = ({M_{Fe{C_2}{O_4}\,}} \times \,\,n.{f_{Fe{C_2}{O_4}\,}})\, + ({M_{F{e_2}{{({C_2}{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{({C_2}{O_4})}_3}\,}})\, + ({M_{FeS{O_4}\,}} \times \,\,n.{f_{FeS{O_4}\,}}) + ({M_{\,F{e_2}{{(S{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{(S{O_4})}_3}\,}})
MKMno4×5=(1×3)+(1×6)+(1×1)+(1×0){M_{KMn{o_4}}} \times \,\,5 = (1 \times \,\,3)\, + (1 \times \,\,6)\, + (1 \times \,\,1) + (1 \times \,\,0)
MKMno4=105=2{M_{KMn{o_4}}} = \dfrac{{10}}{5} = 2
Hence, the total number of KMnO4KMn{O_4} moles required is 22.

Thus, the correct option is (B) .

Note: KMnO4KMn{O_4} or Potassium permanganate is an organic compound. It is used as an oxidizing agent. It is purple-black crystalline solid in colour. It reduces itself and oxidizes the other compounds. It is soluble in water and is also used for cleaning of wounds.