Question
Question: one mole each \[Fe{C_2}{O_4}\,\], \[F{e_2}{({C_2}{O_4})_3}\],\[\,\,FeS{O_4}\] ,\[F{e_2}{(S{O_4})_3}\...
one mole each FeC2O4, Fe2(C2O4)3,FeSO4 ,Fe2(SO4)3, will react with how many moles of acidified KMnO4?
(A) 1
(B) 2
(C) 3
(D) 5
Solution
To find the total number of moles of KMnO4 we have to calculate the n factor value of KMnO4 by comparing the number of gram equivalent of Oxidising agent and the number of gram equivalent of reducing agent.
Complete solution:
Now we will compare the number of gram equivalent of oxidizing agent which is KMnO4 and the number of gram equivalent of reducing agents which are FeC2O4, Fe2(C2O4)3,FeSO4 ,Fe2(SO4)3. Number of gram equivalent is given as:
Mole{s_{O.A.}}\,\, \times \,\,n{{ }}facto{r_{O.A.}}\; = Mole{s_{R.A.}}{{ }} \times n{{ }}facto{r_{R.A.}}$$$${M_{KMn{o_4}}} \times \,\,n.{f_{KMn{o_4}}} = ({M_{Fe{C_2}{O_4}\,}} \times \,\,n.{f_{Fe{C_2}{O_4}\,}})\, + ({M_{F{e_2}{{({C_2}{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{({C_2}{O_4})}_3}\,}})\, + ({M_{FeS{O_4}\,}} \times \,\,n.{f_{FeS{O_4}\,}}) + ({M_{\,F{e_2}{{(S{O_4})}_3}\,}} \times \,\,n.{f_{F{e_2}{{(S{O_4})}_3}\,}})Now we will calculate the n factor of KMnO4. In acidic medium the reaction of KMnO4 reduces from MnO4− to Mn2+ the reaction for the same is:
MnO4−+8H++5e−→Mn2++4H2O
n Factor for KMnO4 =5, Now we will calculate the n factor of FeC2O4.
In FeC2O4Iron is in +2 oxidation state, so it will get oxidised to achieve the highest +3Oxidation state. The reaction will be:
FeC2O4+KMnO4→Fe3++CO2++Mn2+
In this Fe2+→Fe3++1e− and C2O42−→2CO2+2e so n Factor for Fe{C_2}{O_4}\,$$$ = 3$
Now we will calculate the n factor of F{e_2}{({C_2}{O_4})_3}.InF{e_2}{({C_2}{O_4})_3}Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$ Oxidation state. The reaction will be: F{e_2}{({C_2}{O_4})_3}, + ,,KMn{O_4}, \to F{e^{3 + }} + ,,C{O^{2 + }} + M{n^{2 + }}
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and ${C_2}O_4^{2 - } \to 2C{O_2} + 2e$ and there are two iron atoms so n Factor forF{e_2}{({C_2}{O_4})_3} = 6$.
Now we will calculate the n factor of $$\,\,FeS{O_4}$$. In $$\,\,FeS{O_4}$$Iron is in $ + 2$ oxidation state, so it will get oxidised to achieve the highest $ + 3$Oxidation state. The reaction will be:
$$\,\,FeS{O_4}\, + \,\,KMn{O_4}\, \to F{e^{3 + }} + \,\,S{O_4}^{2 - } + M{n^{2 + }}$$
In this $F{e^{2 + }} \to F{e^{3 + }} + 1{e^ - }$and so n Factor for$$\,\,FeS{O_4} = 1$
Fe2(SO4)3 do not oxidise. So its n factor will be zero.
Now putting these values in the gram equivalent equation then we will get:
MKMno4×n.fKMno4=(MFeC2O4×n.fFeC2O4)+(MFe2(C2O4)3×n.fFe2(C2O4)3)+(MFeSO4×n.fFeSO4)+(MFe2(SO4)3×n.fFe2(SO4)3)
MKMno4×5=(1×3)+(1×6)+(1×1)+(1×0)
MKMno4=510=2
Hence, the total number of KMnO4 moles required is 2.
Thus, the correct option is (B) .
Note: KMnO4 or Potassium permanganate is an organic compound. It is used as an oxidizing agent. It is purple-black crystalline solid in colour. It reduces itself and oxidizes the other compounds. It is soluble in water and is also used for cleaning of wounds.