Solveeit Logo

Question

Physics Question on Units and measurement

One main scale division of a vernier caliper is equal to m units. If nth division of main scale coincides with (n + 1)th division of vernier scale,
the least count of the vernier caliper is:

A

nn+1\frac{n}{n+1}

B

mn+1\frac{m}{n+1}

C

1n+1\frac{1}{n+1}

D

mn(n+1)\frac{m}{n(n+1)}

Answer

mn+1\frac{m}{n+1}

Explanation

Solution

Step 1: Relationship between main scale and vernier scale Given that:

nMSD=(n+1)VSD.n \, \text{MSD} = (n + 1) \, \text{VSD}.

From this:

1VSD=nn+1MSD.1 \, \text{VSD} = \frac{n}{n + 1} \, \text{MSD}.

Step 2: Least count formula The least count (L.C.) of a vernier caliper is given by:

L.C.=1MSD1VSD.\text{L.C.} = 1 \, \text{MSD} - 1 \, \text{VSD}.

Substitute 1VSD1 \, \text{VSD} from Step 1:

L.C.=mm(nn+1).\text{L.C.} = m - m \left( \frac{n}{n + 1} \right).

Simplify:

L.C.=m[1nn+1].\text{L.C.} = m \left[ 1 - \frac{n}{n + 1} \right].

L.C.=m(n+1nn+1).\text{L.C.} = m \left( \frac{n + 1 - n}{n + 1} \right).

L.C.=mn+1.\text{L.C.} = \frac{m}{n + 1}.

Final Answer: mn+1\frac{m}{n + 1}.