Solveeit Logo

Question

Question: One hundred identical coins each with probability *p* of showing up heads are tossed once. If 0 \<*p...

One hundred identical coins each with probability p of showing up heads are tossed once. If 0 <p< 1 and the probability of heads showing on 50 coins is equal to that of heads showing on 51 coins, then the value of p is

A

12\frac { 1 } { 2 }

B

49101\frac { 49 } { 101 }

C

50101\frac { 50 } { 101 }

D

51101\frac { 51 } { 101 }

Answer

51101\frac { 51 } { 101 }

Explanation

Solution

We have 100C50p50(1p)50=100C51p51(1p)49{ } ^ { 100 } C _ { 50 } p ^ { 50 } ( 1 - p ) ^ { 50 } = { } ^ { 100 } C _ { 51 } p ^ { 51 } ( 1 - p ) ^ { 49 } or

1pp=100!51!.49!×50!.50!100!=5051\frac { 1 - p } { p } = \frac { 100 ! } { 51 ! .49 ! } \times \frac { 50 ! .50 ! } { 100 ! } = \frac { 50 } { 51 } or 5151p=50p51 - 51 p = 50 p

Ž p=51101p = \frac { 51 } { 101 }.