Solveeit Logo

Question

Physics Question on Waves

One end of a taut string of length 3m3 \,m along the xx axis is fixed at x=0x =0. The speed of the waves in the string is 100ms1100 \,ms ^{-1}. The other end of the string is vibrating in the y direction so that stationary waves are set up in the string. The possible waveform(s) of these stationary waves is (are)

A

y(t)=Asinπx6cos50πt3y(t)=A \sin \frac {\pi x}{6}\cos \, \frac {50 \pi t}{3}

B

y(t)=Asinπx3cos100πt3y(t)=A \sin \frac {\pi x}{3}\cos \, \frac {100 \pi t}{3}

C

y(t)=Asin5πx6cos250πt3y(t)=A \sin \frac {5\pi x}{6}\cos \, \frac {250 \pi t}{3}

D

y(t)=Asin5πx2cos250πty(t)=A \sin \frac {5\pi x}{2}\cos \, {250 \pi t}

Answer

y(t)=Asin5πx2cos250πty(t)=A \sin \frac {5\pi x}{2}\cos \, {250 \pi t}

Explanation

Solution

Taking y(t)=Af(x)g(t)y ( t )= A f ( x ) g ( t ) & Applying the conditions:
1 ; here x=3mx =3 \,m is antinode &x=0\&\, x =0 is node
2 ; possible frequencies are odd multiple of fundamental frequency.
where, vfiudamental =v4=253Hzv_{\text {fiudamental }}=\frac{v}{4 \ell}=\frac{25}{3} Hz