Solveeit Logo

Question

Physics Question on Elasticity

One end of a metal wire is fixed to a ceiling and a load of 2 kg hangs from the other end. A similar wire is attached to the bottom of the load and another load of 1 kg hangs from this lower wire. Then the ratio of longitudinal strain of the upper wire to that of the lower wire will be:[Area of cross section of wire = 0.005 cm2,Y=2×1011N/m2,g=10m/s2]\text{[Area of cross section of wire = 0.005 cm}^2, \, Y = 2 \times 10^{11} \, \text{N/m}^2, \, g = 10 \, \text{m/s}^2\text{]}

Answer

Given: - Mass of the upper load: 2kg2 \, \text{kg} - Mass of the lower load: 1kg1 \, \text{kg}

Step 1: Calculating the Tension in Each Wire

The tension in the upper wire (TupperT_{\text{upper}}) is due to the combined weight of both loads:

Tupper=(2kg+1kg)×g=3×10=30NT_{\text{upper}} = (2 \, \text{kg} + 1 \, \text{kg}) \times g = 3 \times 10 = 30 \, \text{N}

The tension in the lower wire (TlowerT_{\text{lower}}) is due to the weight of the lower load:

Tlower=1×10=10NT_{\text{lower}} = 1 \times 10 = 10 \, \text{N}

Step 2: Calculating the Longitudinal Strain in Each Wire

The longitudinal strain (ϵ\epsilon) is given by:

ϵ=StressY=TA×Y\epsilon = \frac{\text{Stress}}{Y} = \frac{T}{A \times Y}

Calculating the strain in the upper wire:

ϵupper=TupperA×Y=305×107×2×1011\epsilon_{\text{upper}} = \frac{T_{\text{upper}}}{A \times Y} = \frac{30}{5 \times 10^{-7} \times 2 \times 10^{11}} ϵupper=302×106=1.5×105\epsilon_{\text{upper}} = \frac{30}{2 \times 10^{6}} = 1.5 \times 10^{-5}

Calculating the strain in the lower wire:

ϵlower=TlowerA×Y=105×107×2×1011\epsilon_{\text{lower}} = \frac{T_{\text{lower}}}{A \times Y} = \frac{10}{5 \times 10^{-7} \times 2 \times 10^{11}} ϵlower=102×106=0.5×105\epsilon_{\text{lower}} = \frac{10}{2 \times 10^{6}} = 0.5 \times 10^{-5}

Step 3: Calculating the Ratio of Longitudinal Strains

The ratio of the longitudinal strain of the upper wire to that of the lower wire is given by:

Ratio=ϵupperϵlower=1.5×1050.5×105=3\text{Ratio} = \frac{\epsilon_{\text{upper}}}{\epsilon_{\text{lower}}} = \frac{1.5 \times 10^{-5}}{0.5 \times 10^{-5}} = 3

Conclusion: The ratio of longitudinal strain of the upper wire to that of the lower wire is 33.