Solveeit Logo

Question

Physics Question on Friction

One end of a massless spring of spring constant k and natural length l0l_0 is fixed while the other end is connected to a small object of mass mm lying on a frictionless table. The spring remains horizontal on the table. If the object is made to rotate at an angular velocity ωω about an axis passing through fixed end, then the elongation of the spring will be :

A

kmω2l0mω2\frac{k-mω^2l_0}{mω^2}

B

mω2l0k+mω2\frac{mω^2l_0}{k+mω^2}

C

mω2l0kmω2\frac{mω^2l_0}{k-mω^2}

D

(k+mω2l0)mω2\frac{(k+mω^2l_0)}{mω^2}

Answer

mω2l0kmω2\frac{mω^2l_0}{k-mω^2}

Explanation

Solution

The elongation of the spring will be :

mω2(l0\+x)=kxmω^2(l_0 \+ x) = kx

mω2l0=(kmω2)×x⇒ mω^2l_0 = (k – mω^2) × x

x=mω2l0(kmω2)⇒ x=\frac{mω^2l_0}{(k-mω^2)}