Solveeit Logo

Question

Question: One end of a long metallic wire of length L, area of cross-section A and Young’s modulus Y is tied t...

One end of a long metallic wire of length L, area of cross-section A and Young’s modulus Y is tied to the ceiling. The other end is tied to a massless spring of force constant k. A mass m hangs freely from the free end of the spring. It is slightly pulled down and released. Its time period is given by

A

2πmK2\pi\sqrt{\frac{m}{K}}

B

2πmYAKL2\pi\sqrt{\frac{mYA}{KL}}

C

2πmKYA2\pi\sqrt{\frac{mK}{YA}}

D

2πm(KL+YA)KYA2\pi\sqrt{\frac{m(KL + YA)}{KYA}}

Answer

2πm(KL+YA)KYA2\pi\sqrt{\frac{m(KL + YA)}{KYA}}

Explanation

Solution

Force constant of wire k1=Fl=YAL\mathbf{k}_{\mathbf{1}}\mathbf{=}\frac{\mathbf{F}}{\mathbf{l}}\mathbf{=}\frac{\mathbf{YA}}{\mathbf{L}} and force constant of spring k2=kk_{2} = k (given)

Equivalent force constant for given combination

1keq=1k1+1k2=LYA+1k\frac{1}{k_{eq}} = \frac{1}{k_{1}} + \frac{1}{k_{2}} = \frac{L}{YA} + \frac{1}{k}keq=kYAkL+YAk_{eq} = \frac{kYA}{kL + YA}

∴ Time period of combination

T=2πmkeq=2πm(kL+YA)kYAT = 2\pi\sqrt{\frac{m}{k_{eq}}} = 2\pi\sqrt{\frac{m(kL + YA)}{kYA}}