Solveeit Logo

Question

Quantitative Aptitude Question on Number Systems

One direct question from the Number System was 10 to the power 100 divided by seven, candidates had to choose the correct answer for the problem.

Answer

Step 1: Use modular arithmetic
We are looking for:
10100mod710^{100} \mod 7
Step 2: Simplify the base modulo 7
10mod7=310 \mod 7 = 3
Thus:
101003100mod710^{100} \equiv 3^{100} \mod 7
subsection*{Step 3: Find the cyclic pattern of powers of 3 modulo 7
Calculate successive powers of 33 modulo 77:
31mod7=33^1 \mod 7 = 3
32mod7=9mod7=23^2 \mod 7 = 9 \mod 7 = 2
33mod7=27mod7=63^3 \mod 7 = 27 \mod 7 = 6
34mod7=81mod7=43^4 \mod 7 = 81 \mod 7 = 4
35mod7=243mod7=53^5 \mod 7 = 243 \mod 7 = 5
36mod7=729mod7=13^6 \mod 7 = 729 \mod 7 = 1
The powers of 33 modulo 77 repeat every 66 steps. This means:
36k1mod7for any integer k.3^{6k} \equiv 1 \mod 7 \quad \text{for any integer } k.
Step 4: Simplify 3100mod73^{100} \mod 7
Divide 100100 by 66 to find the remainder:
100÷6=16remainder 4.100 \div 6 = 16 \, \text{remainder } 4.
Thus:
310034mod73^{100} \equiv 3^4 \mod 7
From Step 3:
34mod7=43^4 \mod 7 = 4
Final Answer
The remainder when 1010010^{100} is divided by 77 is:
4\boxed{4}