Solveeit Logo

Question

Question: One diagonal of a square is along the line \(8 x - 15 y = 0\) and one of its vertex is (1, 2). The...

One diagonal of a square is along the line 8x15y=08 x - 15 y = 0 and one of its vertex is (1, 2). Then the equation of the sides of the square passing through this vertex, are.

A

23x+7y=9,7x+23y=5323 x + 7 y = 9,7 x + 23 y = 53

B

23x7y+9=0,7x+23y+53=023 x - 7 y + 9 = 0,7 x + 23 y + 53 = 0

C

23x7y9=0,7x+23y53=023 x - 7 y - 9 = 0,7 x + 23 y - 53 = 0

D

None of these

Answer

23x7y9=0,7x+23y53=023 x - 7 y - 9 = 0,7 x + 23 y - 53 = 0

Explanation

Solution

Slope of BDB D is 815\frac { 8 } { 15 } and angle made by BDB D with AD and DC is 4545 ^ { \circ }. So let slope of DC be m, then tan45=±m8151+815m\tan 45 ^ { \circ } = \pm \frac { m - \frac { 8 } { 15 } } { 1 + \frac { 8 } { 15 } m }

(15+8m)=±(15m8)\Rightarrow ( 15 + 8 m ) = \pm ( 15 m - 8 )

m=237m = \frac { 23 } { 7 }and 723- \frac { 7 } { 23 }

Hence the equations of DC and AD are

y2=237(x1)y - 2 = \frac { 23 } { 7 } ( x - 1 ) 23x7y9=0\Rightarrow 23 x - 7 y - 9 = 0and y2=723(x1)y - 2 = - \frac { 7 } { 23 } ( x - 1 )

7x+23y53=0\Rightarrow 7 x + 23 y - 53 = 0.