Solveeit Logo

Question

Mathematics Question on Probability

One card is drawn at random from a well shuffled deck of 52 cards. In which of the following cases are the events E and F independent?
(i)E:'the card drawn is a spade'
F:'the card drawn is an ace'
(ii)E:'the card drawn is black'
F:'the card drawn is a king'
(iii)E:'the card drawn is a king or queen'
F:'the card drawn is a queen or jack'

Answer

SS={All the 52 cards}⇒n(S)=52n(S)=52
(i)EE={13 spades}⇒n(E)=13n(E)=13
P(E)=n(E)n(S)=1352=14∴P(E)=\frac{n(E)}{n(S)}=\frac{13}{52}=\frac{1}{4}
FF={4 aces}n(F)=4⇒n(F)=4
P(F)=n(F)n(S)=452=113∴P(F)=\frac{n(F)}{n(S)}=\frac{4}{52}=\frac{1}{13}
Now EF=E∩F={An ace of spade}n(EF)=1⇒n(E∩F)=1
P(EF)=n(EF)n(S)=152∴P(E∩F)=\frac{n(E∩F)}{n(S)}=\frac{1}{52}
Also.P(E).P(F)=14×113=152P(E).P(F)=\frac{1}{4}×\frac{1}{13}=\frac{1}{52}
Therefore,P(EF)=P(E).P(F)P(E∩F)=P(E).P(F)
Hence,EE and FF are independent events.
(ii)EE={26 black cards}n(E)=26⇒n(E)=26
P(E)=n(E)n(S)=2652=12∴P(E)=\frac{n(E)}{n(S)}=\frac{26}{52}=\frac{1}{2}
F=F={4 kings}n(F)=4⇒n(F)=4
P(F)=n(F)n(S)=452=113∴P(F)=\frac{n(F)}{n(S)}=\frac{4}{52}=\frac{1}{13}
Now,EF=E∩F={2 black kings}n(EF)=2⇒n(E∩F)=2
P(EF)=n(EF)n(S)=252=126∴P(E∩F)=\frac{n(E∩F)}{n(S)}=\frac{2}{52}=\frac{1}{26}
Also,P(E).P(F)=12×113=126P(E).P(F)=\frac{1}{2}×\frac{1}{13}=\frac{1}{26}
Therefore,P(EF)=P(E).P(F)P(E∩F)=P(E).P(F)
Hence,EE and FF are independent events.
(iii)EE={4kings,4queens}n(E)=8⇒n(E)=8
P(E)=n(E)n(S)=852=213∴P(E)=\frac{n(E)}{n(S)}=\frac{8}{52}=\frac{2}{13}
FF={4queens,4jacks}n(F)=8⇒n(F)=8
P(F)=n(F)n(S)=852=213∴P(F)=\frac{n(F)}{n(S)}=\frac{8}{52}=\frac{2}{13}
Now EF=E∩F={4queens}n(Ef)=4⇒n(E∩f)=4
P(EF)=n(EF)n(S)=452=113∴P(E∩F)=\frac{n(E∩F)}{n(S)}=\frac{4}{52}=\frac{1}{13}
Also,P(E).P(F)=213×213=4169P(E).P(F)=\frac{2}{13}×\frac{2}{13}=\frac{4}{169}
Therefore,P(EF)P(E).P(F)P(E∩F)≠P(E).P(F)
Hence,EE and FF are not independent events.