Solveeit Logo

Question

Question: One atomic mass unit in \(amu = 1.66 \times {10^{ - 27}}kg\). The atomic weight of oxygen is 16. The...

One atomic mass unit in amu=1.66×1027kgamu = 1.66 \times {10^{ - 27}}kg. The atomic weight of oxygen is 16. The mass of one atom of oxygen is?

(A) 26.56×1027kg26.56 \times {10^{ - 27}}kg
(B) 10.53×1027kg10.53 \times {10^{ - 27}}kg
(C) 74×1027kg74 \times {10^{ - 27}}kg
(D) 2.73×1027kg2.73 \times {10^{ - 27}}kg

Explanation

Solution

The atomic weight of oxygen is given in amuamu. The conversion factor relating amuamu and kg: 1amu=1.66×1027kg1amu = 1.66 \times {10^{ - 27}}kg. Multiply the atomic weight with the value to get the mass of one atom of oxygen.

Complete step-by-step solution

Atomic mass unit (amuamu): In nuclear physics a convenient unit of mass is the unified atomic mass unit abbreviated as amuamu. It is sometimes also denoted by u.

Atomic mass unit is defined as one- twelfth (112th \dfrac{1}{12}th) the mass of a carbon – 12 (6C12_6{C^{12}} ) atom.

It is given that the atomic weight of oxygenn = 16n{\text{ }} = {\text{ }}16 amuamu. The mass of one atom can be calculated using the given relation,1amu=1.66×1027kg1amu = 1.66 \times {10^{ - 27}}kg

Therefore, the mass of one atom of oxygen is

$
16 \times 1.66 \times {10^{ - 27}} \\

= 26.56 \times {10^{ - 27}}kg \\

Massofoneatomofoxygenis Mass of one atom of oxygen is26.56 \times {10^{ - 27}}kg$

the correct option is A.

Note: Mass of electron = 9.1 × 1031kg = 0.0005486 amu = {\text{ }}9.1{\text{ }} \times {\text{ }}{10^{ - 31}}kg{\text{ }} = {\text{ }}0.0005486{\text{ }}amu

Mass of proton = 1.6726 × 1027kg = 1.007276 amu = {\text{ }}1.6726{\text{ }} \times {\text{ }}{10^{ - 27}}kg{\text{ }} = {\text{ }}1.007276{\text{ }}amu

Mass of neutron =  1.6750 × 1027kg = 1.00865 amu = \;1.6750{\text{ }} \times {\text{ }}{10^{ - 27}}kg{\text{ }} = {\text{ }}1.00865{\text{ }}amu

Atomic mass unit is also associated with energy in terms of  MeV\;MeV, from the Einstein’s mass energy equation E = mc2E{\text{ }} = {\text{ }}m{c^2} where, 1 amu = 931 MeV,{\text{ }}1{\text{ }}amu{\text{ }} = {\text{ }}931{\text{ }}MeV.