Question
Question: On which of the following intervals is the function x<sup>100</sup> + sin x – 1 decreasing ?...
On which of the following intervals is the function x100 + sin x – 1 decreasing ?
A
(0, p/2)
B
(0, 1)
C
(p/2, p)
D
None of these
Answer
None of these
Explanation
Solution
ƒ(x) = x100 + sin x – 1 ̃ ƒ¢(x) = 100 x99 + cos x.
If 0 < x < p/2, then ƒ¢(x) > 0, therefore ƒ(x) is increasing on (0, p/2).
If 0 < x < 1, then 100 x99 + cos x > 0
[Q x lies between 0 and 1 radian]
̃ ƒ¢(x) = 100 x99 + cos x > 0
̃ ƒ (x) is increasing on (0, 1).
If p/2 < x < p, then 100 x99 > 100
[Q x > 1, \ x99 > 1]
̃ 100 x99 + cos x > 0
[Q cos x ³ –1, \ 100 x99 + cos x > 99]
̃ ƒ¢(x) > 0 ̃ f(x) is increasing on (p/2, p).