Solveeit Logo

Question

Question: On the set of all real numbers, define a relation \(R=\left\\{ \left( a,b \right):a < b \right\\}\)....

On the set of all real numbers, define a relation R=\left\\{ \left( a,b \right):a < b \right\\}. Show that R is (i) not reflexive (ii) transitive (iii) not symmetric.

Explanation

Solution

To show that R is reflexive, find an example such that (a,a)R\left( a,a \right)\in R for aSa\in S , To show that R is transitive , find an example such that (a,b)R\left( a,b \right)\in R and (b,c)R\left( b,c \right)\in R then (a,c)R\left( a,c \right)\in R for a,b,cSa,b,c\in S.To show that R is not symmetric, find an example such that (a,b)R\left( a,b \right)\in R but (b,a)R\left( b,a \right)\notin R for a,bSa,b\in S .

Complete step by step answer:
Let ‘A’ be a set then Reflexivity, Symmetry and transitivity of a relation on set ‘A’ is defined as follows:
Reflexive relation: - A relation R on a set ‘A’ is said to be reflexive if every element of A is related to itself i.e. for every element say (a) in set A, (a,a)R\left( a,a \right)\in R .
Thus, R on a set ‘A’ is not reflexive if there exists an element aAa\in A such that (a,a)R\left( a,a \right)\notin R.
Symmetric Relation: - A relation R on a set ‘A’ is said to be symmetric relation if (a,b)R\left( a,b \right)\in R then (b,a)\left( b,a \right)must be belong to R. i.e. (a,b)R(b,a)R\left( a,b \right)\in R\Rightarrow \left( b,a \right)\in R For all a,bAa,b\in A.
Transitive relation:- A relation R on ‘A’ is said to be a transitive relation If (a,b)R\left( a,b \right)\in R and (b,c)R\left( b,c \right)\in R then (a,c)R\left( a,c \right)\in R.
I.e. (a,b)R\left( a,b \right)\in Rand (b,c)R(a,c)R\left( b,c \right)\in R\Rightarrow \left( a,c \right)\in R.
Given relation R=\left\\{ \left( a,b \right):a < b \right\\}
\therefore R=\left\\{ \left( 1,2 \right),\left( 2,3 \right),\left( 2,4 \right),\left( 3,8 \right),\left( 1,3 \right),\left( 1,8 \right),\left( 1,4 \right),\left( 2,8 \right),.......... \right\\} .
Check reflexivity: If (a,a)R\left( a,a \right)\in R , foe aSa\in S , then R is reflexive. Since, R=\left\\{ \left( a,b \right):a < b \right\\}.
That means. (a,a)R\left( a,a \right)\notin R , because a number is equal to itself but doesn’t belong to set R.
Therefore, R is not reflexive.
Check symmetricity: If (a,b)R\left( a,b \right)\in R for a.bSa.b\in S and (b,a)R\left( b,a \right)\notin R , Then R is not symmetric.
Since R=\left\\{ \left( a,b \right):a < b \right\\}
If (a.b)R\left( a.b \right)\in R , that means (a<b)\left( a < b \right) i.e. (b>a)\left( b > a \right) Therefore, (b,a)R\left( b,a \right)\notin R .
It is very obvious that if (a,b)Ra<b\left( a,b \right)\in R\Rightarrow a < b  a is less than or equal to b  b is not less than or equal to a\Rightarrow \text{ a is less than or equal to b }\Rightarrow \text{ b is not less than or equal to a} .
From set R, we can see that (1,2)R\left( 1,2 \right)\in R But (2,1)R\left( 2,1 \right)\notin R
(2,3)R, But (3,2)R\left( 2,3 \right)\in R,\text{ But }\left( 3,2 \right)\notin R .
Therefore, R is not symmetric.
Check transitivity: If (a,b)R\left( a,b \right)\in R and (b,c)R\left( b,c \right)\in R for a,b,cSa,b,c\in S and (a,c)R\left( a,c \right)\in R , then R is transitive.
From the set R, we can clearly see that –
(1,2)R and (2,3)R then (1,3)R (1,2)R and (2,4)R then (1,4)R (1,3)R and (3,8)R then (1,8)R \begin{aligned} & \left( 1,2 \right)\in R\text{ and }\left( 2,3 \right)\in R\text{ then }\left( 1,3 \right)\in R \\\ & \left( 1,2 \right)\in R\text{ and }\left( 2,4 \right)\in R\text{ then }\left( 1,4 \right)\in R \\\ & \left( 1,3 \right)\in R\text{ and }\left( 3,8 \right)\in R\text{ then }\left( 1,8 \right)\in R \\\ \end{aligned}
…………………………………….. and so on.
We can also notice that if (a,b)Ra<b\left( a,b \right)\in R\Rightarrow a < b…..(1)
And (b,c)Rb<c\left( b,c \right)\in R\Rightarrow b < c ……………………. (2)
From (1) and (2) we can conclude that a<ca < c .
Therefore, R is transitive.

Hence we conclude that relation R is transitive but not reflexive and symmetric.

Note: To prove that R is transitive, be careful that if (a,b)R\left( a,b \right)\in R and (b,c)R\left( b,c \right)\in R then (a,c)R\left( a,c \right)\in R . If there is no pair such that (a,b)R\left( a,b \right)\in R and (b,c)R\left( b,c \right)\in R. Then we don’t need to check, R will always be transitive in this case.