Question
Question: On the real line \[\mathbb{R}\], we define two functions f and g as follows : \[f\left( x \right) ...
On the real line R, we define two functions f and g as follows :
f\left( x \right) = \min \left\\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\\}.
g\left( x \right) = \max \left\\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\\}.
Where [x] denotes the largest integer not exceeding x. The positive integer n for which
0∫n(g(x)−f(x))dx=100 is
(A) 100
(B) 198
(C) 200
(D) 202
Solution
In this question, we have to evaluate the integral in a specific range.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by [x].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line R, we define two functions f and g as follows :
f\left( x \right) = \min \left\\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\\}.
g\left( x \right) = \max \left\\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\\}.
Where [x] denotes the largest integer not exceeding x.
We need to find out the positive integer n for which
⇒0∫n(g(x)−f(x))dx=100.
Let us denote,
⇒f(x)=x&g(x)=g.
Also, m(x)=fractional part of x.
⇒m(x)=x−[x].
Let us consider the term,
\Rightarrow f\left( x \right) = \min \left\\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\\}.
By using m(x)=x−[x] we get,
\Rightarrow f\left( x \right) = \min \left\\{ {m\left( x \right),1 - m\left( x \right)} \right\\}
Now for g(x),
\Rightarrow g\left( x \right) = \max \left\\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\\}
By using m(x)=x−[x] we get,
\Rightarrow g\left( x \right) = \max \left\\{ {m\left( x \right),1 - m\left( x \right)} \right\\}
Where m(x) is always 0⩽m(x)<1
For, 0<m(x)<0.5
⇒f=m(x), g=1−m(x)
Thus,
⇒g−f=1−m(x)−m(x)=1−2m(x)
⇒g−f=1−2m(x)........(1)
Similarly for, 0.5<m(x)<1
⇒f=1−m(x), g=m(x)
Thus,
\Rightarrow g - f = m\left( x \right) - \left\\{ {1 - m\left( x \right)} \right\\}
Simplifying we get,
⇒m(x)−1+m(x)=2m(x)−1
⇒g−f=2m(x)−1.........(2)
Given that, 0∫n(g(x)−f(x))dx=100
Since the above function is periodic,
That is, P(k)=P(k+1) where, P(k) = \int\limits_k^{k + 1} {\left\\{ {g\left( x \right) - f\left( x \right)} \right\\}dx}
So we get,
\Rightarrow \int\limits_0^1 {\left\\{ {g\left( x \right) - f\left( x \right)} \right\\}dx} = \int\limits_1^2 {\left\\{ {g\left( x \right) - f\left( x \right)} \right\\}dx} = \int\limits_2^3 {\left\\{ {g\left( x \right) - f\left( x \right)} \right\\}dx = ... = \int\limits_{n - 1}^n {\left\\{ {g\left( x \right) - f\left( x \right)} \right\\}dx} }
Therefore we get, 0∫n(g(x)−f(x))dx=100
⇒n0∫1(g(x)−f(x))dx=100
Splitting the limit,
⇒n0∫0.5(g(x)−f(x))dx+n0.5∫1(g(x)−f(x))dx=100
By substituting the equations (1) and (2) we get,
\Rightarrow n\int\limits_0^{0.5} {\left\\{ {1 - 2m\left( x \right)} \right\\}dx + n\int\limits_{0.5}^1 {\left\\{ {2m\left( x \right) - 1} \right\\}dx} = 100}
[x]is the greatest integer function, returning the integer just below the value entered.
⇒n0∫0.5(1−2x)dx+n0.5∫1(2x−1)dx=100
Integrating the terms we get,