Solveeit Logo

Question

Mathematics Question on Application of derivatives

On the interval [0,1][0, 1], the function x25(1x)75x^{25}(1 - x)^{75} takes its maximum value at the point

A

00

B

14 \frac{1}{4}

C

12 \frac{1}{2}

D

13 \frac{1}{3}

Answer

14 \frac{1}{4}

Explanation

Solution

Let f(x)=x25(1x)75,x[0,1]f\left(x\right) = x^{25}\left(1 - x\right)^{75}, x \in \left[0, 1\right]
f(x)=25x24(1x)7575x25(1x)74\Rightarrow f '\left(x\right) = 25x^{24} \left(1 - x\right)^{75} - 75x^{25} \left(1 - x\right)^{74}
=25x24(1x)74(1x)3x= 25x^{24} \left(1 - x\right)^{74} \left(1 - x\right) - 3x
=25x24(1x)74(14x)= 25 x^{24} \left(1 - x\right)^{74} \left(1 - 4x\right)

We can see that f(x)f '\left(x\right) is positive for x14x \frac{1}{4}.
Hence, f(x)f \left(x\right) attains maximum at x=14.x = \frac{1}{4}.